The numerical simulation of periodic solutions for a predator-prey system

被引:0
作者
Lua, Chun [1 ,2 ]
Ding, Xiaohua [2 ]
Liu, Mingzhu [3 ]
机构
[1] Qingdao Technol Univ, Dept Math, Qingdao 266520, Peoples R China
[2] Harbin Inst Technol Weihai, Dept Math, Weihai 264209, Peoples R China
[3] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Semi-ratio-dependent predator-prey system; Periodic solution; Lyapunov functional; Global stability; EXISTENCE;
D O I
10.1016/j.camwa.2009.10.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the existence and global stability of periodic solutions for a semi-ratio-dependent predator-prey system with Holling IV functional response and time delays are investigated. Using coincidence degree theory and Lyapunov method, sufficient conditions for the existence and global stability of periodic solutions are obtained. A numerical simulation is given to illustrate the results. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:868 / 879
页数:12
相关论文
共 16 条
[1]   A MATHEMATICAL MODEL FOR CONTINUOUS CULTURE OF MICROORGANISMS UTILIZING INHIBITORY SUBSTRATES [J].
ANDREWS, JF .
BIOTECHNOLOGY AND BIOENGINEERING, 1968, 10 (06) :707-+
[2]  
[Anonymous], 1977, COINCIDENCE DEGREE N, DOI DOI 10.1007/BFB0089537
[3]   Existence of periodic solutions in predator-prey and competition dynamic systems [J].
Bohner, Martin ;
Fan, Meng ;
Zhang, Jimin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (05) :1193-1204
[4]   EFFECT OF TIME-DELAY AND GROWTH-RATE INHIBITION IN BACTERIAL TREATMENT OF WASTEWATER [J].
BUSH, AW ;
COOK, AE .
JOURNAL OF THEORETICAL BIOLOGY, 1976, 63 (02) :385-395
[5]   Periodicity in a logistic type system with several delays [J].
Chen, FD ;
Shi, JL .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (1-2) :35-44
[6]   The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model [J].
Collings, JB .
JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 36 (02) :149-168
[7]   Existence and global attractivity of positive periodic solutions of periodic n-species Lotka-Volterra competition systems with several deviating arguments [J].
Fan, M ;
Wang, K ;
Jian, DQ .
MATHEMATICAL BIOSCIENCES, 1999, 160 (01) :47-61
[8]  
Fan M, 2004, DISCRETE CONT DYN-B, V4, P563
[9]   Periodic solutions of delayed ratio-dependent predator-prey models with monotonic or nonmonotonic functional responses [J].
Fan, YH ;
Li, WT ;
Wang, LL .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2004, 5 (02) :247-263
[10]  
Gopalsamy K., 2013, STABILITY OSCILLATIO, V74