Physics-driven shape variation modelling at early design stage

被引:17
|
作者
Das, Abhishek [1 ]
Franciosa, Pasquale [1 ]
Williams, David [1 ]
Ceglarek, Darek [1 ]
机构
[1] Univ Warwick, WMG, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Variational parts; Sheet metal parts; Design process; Right first time; Shape error; COMPLIANT ASSEMBLIES; FIXTURE DESIGN; METAL; OPTIMIZATION; SIMULATION;
D O I
10.1016/j.procir.2016.01.031
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Modern markets are becoming increasingly competitive emphasizing the importance of achieving Right First Time (RFT) during the early design stage as a key enabler facilitating cost and time-to-launch (or time-to-market) reduction. One of the leading challenges to deliver RFT is the lack of effective methods to model product errors at early design stage. Usually, the assembly process is designed under the assumption of ideal (nominal) products. On the contrary, it has been demonstrated that product errors (both geometrical and dimensional) affect the performance of the final assembly. To facilitate easy decision making at early design stage, new methods and models are required to support design engineers. In this study, a framework has been proposed for early design support to generate product variation. International standard provides guidelines for product control and inspection (ISO-GPS or ASME-GD & however, the integration of tolerance standard into nominal sized CAD models is not yet achieved. Current, Computer Aided Tolerancing (CAT) tools mainly capable to model orientation and position tolerance specifications, whereas part shape errors are omitted. This paper presents an innovative physics-driven simulation framework to model shape errors of compliant sheet metal parts at early design stage. The modelling framework consists of three important stages: (i) initial shape error prediction using physic-based simulation, such as, stamping process simulation; (ii) individual orthogonal shape error modes/patterns identification based on decomposition techniques, such as, Geometric Modal Analysis (GMA); and, (iii) simulation of shape error variation classes by assigning distribution to each orthogonal shape error modes. The proposed approach enables to generate shape errors at early design stage of assembly process which can be utilized to optimize the assembly process, including fixture design and joining process parameters. An industrial automotive component illustrates the proposed methodology. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1072 / 1077
页数:6
相关论文
共 50 条
  • [21] Physics-Driven Neural Network for Interval Q Inversion
    Wang, Yonghao
    Cao, Wei
    Geng, Weiheng
    Jia, Zhuo
    Lu, Wenkai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [22] Introduction to this special section: Physics-driven machine learning
    Shaw, Simon
    Kaplan, Sam
    Li, Chengbo
    Leading Edge, 2022, 41 (06):
  • [23] PHYSICS-DRIVEN STRUCTURED COSPARSE MODELING FOR SOURCE LOCALIZATION
    Nam, Sangnam
    Gribonval, Remi
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 5397 - 5400
  • [24] Physics-Driven Deep Learning Inversion with Application to Magnetotelluric
    Liu, Wei
    Wang, He
    Xi, Zhenzhu
    Zhang, Rongqing
    Huang, Xiaodi
    REMOTE SENSING, 2022, 14 (13)
  • [25] MetaPhyNet: intelligent design of large-scale metasurfaces based on physics-driven neural network
    Su, Jian Lin
    You, Jian Wei
    Chen, Long
    Yu, Xin Yi
    Yin, Qing Chun
    Yuan, Guo Hang
    Huang, Si Qi
    Ma, Qian
    Zhang, Jia Nan
    Cui, Tie Jun
    JOURNAL OF PHYSICS-PHOTONICS, 2024, 6 (03):
  • [26] A Physics-driven and Data-driven Digital Twin for Vehicle Immunity Testing
    Maeurer, Christoph
    2024 INTERNATIONAL SYMPOSIUM AND EXHIBITION ON ELECTROMAGNETIC COMPATIBILITY, EMC EUROPE 2024, 2024, : 243 - 248
  • [27] Physics-Driven Inverse Problems Made Tractable With Cosparse Regularization
    Kitic, Srdan
    Albera, Laurent
    Bertin, Nancy
    Gribonval, Remi
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (02) : 335 - 348
  • [28] Physics-Driven Machine Learning for Computational Imaging: Part 2
    Wen, Bihan
    Ravishankar, Saiprasad
    Zhao, Zhizhen
    Giryes, Raja
    Ye, Jong Chul
    IEEE SIGNAL PROCESSING MAGAZINE, 2023, 40 (02) : 13 - 15
  • [29] Physics-driven Topological Optimization of Diffractive Elements for Augmented Reality
    Ma, Hongfeng
    Song, Qiang
    Guo, Xiaoming
    Huang, Hao
    Yang, Xin
    Li, Fang
    Ma, Guobin
    HOLOGRAPHY, DIFFRACTIVE OPTICS, AND APPLICATIONS XI, 2021, 11898
  • [30] Implicit Neural Representation for Physics-driven Actuated Soft Bodies
    Yang, Lingchen
    Kim, Byungsoo
    Zoss, Gaspard
    Gozcu, Baran
    Gross, Markus
    Solenthaler, Barbara
    ACM TRANSACTIONS ON GRAPHICS, 2022, 41 (04):