Semi-regular Tilings of the Hyperbolic Plane

被引:7
作者
Datta, Basudeb [1 ]
Gupta, Subhojoy [1 ]
机构
[1] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
关键词
Semi-regular tilings; Hyperbolic tilings; Archimedean tilings; Semi-equivelar maps; Vertex-transitive tilings; EQUIVELAR MAPS; UNIFORM MAPS; TESSELLATIONS; SURFACES;
D O I
10.1007/s00454-019-00156-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A semi-regular tiling of the hyperbolic plane is a tessellation by regular geodesic polygons with the property that each vertex has the same vertex-type, which is a cyclic tuple of integers that determine the number of sides of the polygons surrounding the vertex. We determine combinatorial criteria for the existence, and uniqueness, of a semi-regular tiling with a given vertex-type, and pose some open questions.
引用
收藏
页码:531 / 553
页数:23
相关论文
共 16 条
[1]   Equivelar maps on the torus [J].
Brehm, Ulrich ;
Kuehnel, Wolfgang .
EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (08) :1843-1861
[2]  
Coxeter H.S.M, 1973, Regular Polytopes
[3]   Semi-equivelar and vertex-transitive maps on the torus (vol 58, pg 617, 2017) [J].
Datta, Basudeb ;
Maity, Dipendu .
BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2020, 61 (01) :187-188
[4]   Semi-equivelar maps on the torus and the Klein bottle are Archimedean [J].
Datta, Basudeb ;
Maity, Dipendu .
DISCRETE MATHEMATICS, 2018, 341 (12) :3296-3309
[5]   Semi-equivelar and vertex-transitive maps on the torus [J].
Datta B. ;
Maity D. .
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2017, 58 (3) :617-634
[6]  
EDMONDS AL, 1982, INVENT MATH, V69, P331, DOI 10.1007/BF01389358
[7]   REGULAR TESSELLATIONS OF SURFACES AND (P, Q, 2)-TRIANGLE GROUPS [J].
EDMONDS, AL ;
EWING, JH ;
KULKARNI, RS .
ANNALS OF MATHEMATICS, 1982, 116 (01) :113-132
[8]  
Grunbaum B., 1977, Mathematics Magazine, V50, P227, DOI [10.1080/0025570x.1977.11976655, 10.1080/0025570X.1977.11976655, 10.2307/2689529, DOI 10.1080/0025570X.1977.11976655]
[9]  
Grunbaum B., 1987, Tilings and Patterns
[10]  
Grünbaum B, 2009, ELEMENT MATH, V64, P89