Mittag-Leffler functions and stable Levy processes without negative jumps

被引:11
作者
Simon, Thomas [1 ]
机构
[1] Univ Lille 1, UFR Math, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
关键词
Factorisation de Wiener-Hopf; Fonction de Mittag-Leffler; Processus de Levy stable; SUPREMUM; MAXIMA; LAW;
D O I
10.1016/j.exmath.2009.12.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We remark that a certain transformation of the Mittag-Leffler function alpha is completely monotone for every alpha is an element of [1,2]. Thanks to the exact expression of its Bernstein density function, we obtain an identity in law between one-sided exit times for completely asymmetric stable Levy processes. In the spectrally positive case, this identity gives an expression for the density of the running supremum which is different from the one recently obtained by Bernyk, Dalang and Peskir (2008) [1]. (C) 2010 Elsevier GmbH. All rights reserved.
引用
收藏
页码:290 / 298
页数:9
相关论文
共 21 条
[1]  
[Anonymous], 2007, LECT NOTES MATH
[2]  
[Anonymous], 2006, INTRO LECT FLUCTUATI
[3]   The law of the supremum of a stable Levy process with no negative jumps [J].
Bernyk, Violetta ;
Dalang, Robert C. ;
Peskir, Goran .
ANNALS OF PROBABILITY, 2008, 36 (05) :1777-1789
[4]   On the first exit time of a completely asymmetric stable process from a finite interval [J].
Bertoin, J .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1996, 28 :514-520
[5]  
Bertoin J., 1996, Levy Processes
[6]   MAXIMA OF SUMS OF RANDOM-VARIABLES AND SUPREMA OF STABLE PROCESSES [J].
BINGHAM, NH .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1973, 26 (04) :273-296
[7]  
Dieudonne J., 1968, Calcul Infinitesimal
[8]  
DONATIMARTIN C, 1994, STOCHASTICS STOCHAST, V50, P1