Metal-organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction

被引:209
|
作者
Hao, Yu-Chen [1 ]
Chen, Li-Wei [1 ]
Li, Jiani [1 ]
Guo, Yu [2 ]
Su, Xin [1 ]
Shu, Miao [3 ]
Zhang, Qinghua [4 ]
Gao, Wen-Yan [1 ]
Li, Siwu [1 ]
Yu, Zi-Long [1 ]
Gu, Lin [4 ]
Feng, Xiao [1 ]
Yin, An-Xiang [1 ]
Si, Rui [3 ]
Zhang, Ya-Wen [2 ]
Wang, Bo [1 ,5 ]
Yan, Chun-Hua [2 ]
机构
[1] Beijing Inst Technol, Sch Chem & Chem Engn, Minist Educ,Key Lab Cluster Sci, Beijing Key Lab Photoelect Electrophoton Convers, Beijing, Peoples R China
[2] Peking Univ, Coll Chem & Mol Engn, Beijing Natl Lab Mol Sci, State Key Lab Rare Earth Mat Chem & Applicat,PKU, Beijing, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai, Peoples R China
[4] Chinese Acad Sci, Inst Phys, Beijing, Peoples R China
[5] Beijing Inst Technol, Adv Technol Res Inst Jinan, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON-DIOXIDE; PHOTOREDUCTION; SEMICONDUCTOR; CATALYSTS; UIO-66; WATER;
D O I
10.1038/s41467-021-22991-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The demand for sustainable energy has motivated the development of artificial photosynthesis. Yet the catalyst and reaction interface designs for directly fixing permanent gases (e.g. CO2, O-2, N-2) into liquid fuels are still challenged by slow mass transfer and sluggish catalytic kinetics at the gas-liquid-solid boundary. Here, we report that gas-permeable metal-organic framework (MOF) membranes can modify the electronic structures and catalytic properties of metal single-atoms (SAs) to promote the diffusion, activation, and reduction of gas molecules (e.g. CO2, O-2) and produce liquid fuels under visible light and mild conditions. With Ir SAs as active centers, the defect-engineered MOF (e.g. activated NH2-UiO-66) particles can reduce CO2 to HCOOH with an apparent quantum efficiency (AQE) of 2.51% at 420nm on the gas-liquid-solid reaction interface. With promoted gas diffusion at the porous gas-solid interfaces, the gas-permeable SA/MOF membranes can directly convert humid CO2 gas into HCOOH with a near-unity selectivity and a significantly increased AQE of 15.76% at 420nm. A similar strategy can be applied to the photocatalytic O-2-to-H2O2 conversions, suggesting the wide applicability of our catalyst and reaction interface designs. Photoreduction of permanent gas faces challenges in reactant diffusion and activation at the three-phase interface. Here the authors showed porous metal-organic framework membranes decorated by metal single atoms can boost the photoreduction of CO2 and O-2 at the high-throughput gas-solid interface.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Metal-organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction
    Yu-Chen Hao
    Li-Wei Chen
    Jiani Li
    Yu Guo
    Xin Su
    Miao Shu
    Qinghua Zhang
    Wen-Yan Gao
    Siwu Li
    Zi-Long Yu
    Lin Gu
    Xiao Feng
    An-Xiang Yin
    Rui Si
    Ya-Wen Zhang
    Bo Wang
    Chun-Hua Yan
    Nature Communications, 12
  • [2] Asymmetric Ligands of a Metal-Organic Framework on Enhanced Photocatalytic CO2 Reduction
    Li, Ke
    Ge, Sulong
    Wei, Xiaoqian
    Zou, Weixin
    Wang, Xiuwen
    Qian, Qiuhui
    Gao, Bin
    Dong, Lin
    INORGANIC CHEMISTRY, 2023, 62 (39) : 15824 - 15828
  • [3] CO2 photocatalytic reduction with robust and stable metal-organic framework: a review
    Mori, Ryohei
    MATERIALS FOR RENEWABLE AND SUSTAINABLE ENERGY, 2024, 13 (01) : 109 - 132
  • [4] Electronic regulation of single-atomic Ti sites on metal hydroxide for boosting photocatalytic CO2 reduction
    Huang, Ning-Yu
    Li, Bai
    Wu, Duojie
    Chen, Di
    Zheng, Yu-Tao
    Shao, Bing
    Wang, Wenjuan
    Gu, Meng
    Li, Lei
    Xu, Qiang
    CHEMICAL SCIENCE, 2025, 16 (03) : 1265 - 1270
  • [5] Photocatalytic CO2 reduction over metal-organic framework-based materials
    Li, Dandan
    Kassymova, Meruyert
    Cai, Xuechao
    Zang, Shuang-Quan
    Jiang, Hai-Long
    COORDINATION CHEMISTRY REVIEWS, 2020, 412
  • [6] Metal-organic frameworks (MOFs) for photocatalytic CO2 reduction
    Chen, Yi
    Wang, Dengke
    Deng, Xiaoyu
    Li, Zhaohui
    CATALYSIS SCIENCE & TECHNOLOGY, 2017, 7 (21) : 4893 - 4904
  • [7] Multiple roles of metal-organic framework-based catalysts in photocatalytic CO2 reduction
    Zhang, Yaping
    Xu, Jixiang
    Wang, Lei
    Chen, Banglin
    CHEMICAL PHYSICS REVIEWS, 2022, 3 (04):
  • [8] Exfoliation of a Two-Dimensional Metal-Organic Framework for Enhanced Photocatalytic CO2 Reduction
    Zhang, Ke
    Fang, Zhi-Bin
    Huang, Qian-Qian
    Zhang, An-An
    Li, Ji-Long
    Li, Jun-Yu
    Zhang, Yue
    Zhang, Teng
    Cao, Rong
    INORGANIC CHEMISTRY, 2023, 62 (22) : 8472 - 8477
  • [9] Enhanced photocatalytic CO2 reduction by integrating an iron based metal-organic framework and a photosensitizer
    Liu, Ning
    Tang, Kexin
    Wang, Denghui
    Fei, Fuhao
    Cui, Haopeng
    Li, Fei
    Lei, Jianqiu
    Crawshaw, Danielle
    Zhang, Xiaodong
    Tang, Liang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 332
  • [10] Rational Design of Metal-Organic Framework-Based Materials for Photocatalytic CO2 Reduction
    Zhan, Wenwen
    Gao, Hao
    Yang, Yang
    Li, Xiaofang
    Zhu, Qi-Long
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2022, 3 (07):