Preoperative ultrasound radiomics analysis for expression of multiple molecular biomarkers in mass type of breast ductal carcinoma in situ

被引:42
作者
Wu, Linyong [1 ]
Zhao, Yujia [1 ]
Lin, Peng [1 ]
Qin, Hui [1 ]
Liu, Yichen [1 ]
Wan, Da [1 ]
Li, Xin [2 ]
He, Yun [1 ]
Yang, Hong [1 ]
机构
[1] Guangxi Med Univ, Dept Med Ultrasound, Affiliated Hosp 1, Nanning 530021, Guangxi Zhuang, Peoples R China
[2] GE Healthcare, Shanghai, Peoples R China
关键词
DCIS; Molecular biomarkers; Radiomics; Ultrasound; CANCER; MAMMOGRAPHY; PROGRESSION; MANAGEMENT; RECURRENCE; APOPTOSIS; DIAGNOSIS; DCIS; MRI;
D O I
10.1186/s12880-021-00610-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background The molecular biomarkers of breast ductal carcinoma in situ (DCIS) have important guiding significance for individualized precision treatment. This study was intended to explore the significance of radiomics based on ultrasound images to predict the expression of molecular biomarkers of mass type of DCIS. Methods 116 patients with mass type of DCIS were included in this retrospective study. The radiomics features were extracted based on ultrasound images. According to the ratio of 7:3, the data sets of molecular biomarkers were split into training set and test set. The radiomics models were developed to predict the expression of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), Ki67, p16, and p53 by using combination of multiple feature selection and classifiers. The predictive performance of the models were evaluated using the area under the curve (AUC) of the receiver operating curve. Results The investigators extracted 5234 radiomics features from ultrasound images. 12, 23, 41, 51, 31 and 23 features were important for constructing the models. The radiomics scores were significantly (P < 0.05) in each molecular marker expression of mass type of DCIS. The radiomics models showed predictive performance with AUC greater than 0.7 in the training set and test set: ER (0.94 and 0.84), PR (0.90 and 0.78), HER2 (0.94 and 0.74), Ki67 (0.95 and 0.86), p16 (0.96 and 0.78), and p53 (0.95 and 0.74), respectively. Conclusion Ultrasonic-based radiomics analysis provided a noninvasive preoperative method for predicting the expression of molecular markers of mass type of DCIS with good accuracy.
引用
收藏
页数:14
相关论文
共 54 条
[1]   The Evolving Status of Radiomics [J].
Alderson, Philip O. ;
Summers, Ronald M. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2020, 112 (09) :869-870
[2]   Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts [J].
Atabaki-Pasdar, Naeimeh ;
Ohlsson, Mattias ;
Vinuela, Ana ;
Frau, Francesca ;
Pomares-Millan, Hugo ;
Haid, Mark ;
Jones, Angus G. ;
Thomas, E. Louise ;
Koivula, Robert W. ;
Kurbasic, Azra ;
Mutie, Pascal M. ;
Fitipaldi, Hugo ;
Fernandez, Juan ;
Dawed, Adem Y. ;
Giordano, Giuseppe N. ;
Forgie, Ian M. ;
McDonald, Timothy J. ;
Rutters, Femke ;
Cederberg, Henna ;
Chabanova, Elizaveta ;
Dale, Matilda ;
Masi, Federico De ;
Thomas, Cecilia Engel ;
Allin, Kristine H. ;
Hansen, Tue H. ;
Heggie, Alison ;
Hong, Mun-Gwan ;
Elders, Petra J. M. ;
Kennedy, Gwen ;
Kokkola, Tarja ;
Pedersen, Helle Krogh ;
Mahajan, Anubha ;
McEvoy, Donna ;
Pattou, Francois ;
Raverdy, Violeta ;
Haussler, Ragna S. ;
Sharma, Sapna ;
Thomsen, Henrik S. ;
Vangipurapu, Jagadish ;
Vestergaard, Henrik ;
't Hart, Leen M. ;
Adamski, Jerzy ;
Musholt, Petra B. ;
Brage, Soren ;
Brunak, Soren ;
Dermitzakis, Emmanouil ;
Frost, Gary ;
Hansen, Torben ;
Laakso, Markku ;
Pedersen, Oluf .
PLOS MEDICINE, 2020, 17 (06)
[3]   Characterization of male breast cancer: results of the EORTC 10085/TBCRC/BIG/NABCG International Male Breast Cancer Program [J].
Cardoso, F. ;
Bartlett, J. M. S. ;
Slaets, L. ;
van Deurzen, C. H. M. ;
van Leeuwen-Stok, E. ;
Porter, P. ;
Linderholm, B. ;
Hedenfalk, I. ;
Schroder, C. ;
Martens, J. ;
Bayani, J. ;
van Asperen, C. ;
Murray, M. ;
Hudis, C. ;
Middleton, L. ;
Vermeij, J. ;
Punie, K. ;
Fraser, J. ;
Nowaczyk, M. ;
Rubio, I. T. ;
Aebi, S. ;
Kelly, C. ;
Ruddy, K. J. ;
Winer, E. ;
Nilsson, C. ;
Dal Lago, L. ;
Korde, L. ;
Benstead, K. ;
Bogler, O. ;
Goulioti, T. ;
Peric, A. ;
Litiere, S. ;
Aalders, K. C. ;
Poncet, C. ;
Tryfonidis, K. ;
Giordano, S. H. .
ANNALS OF ONCOLOGY, 2018, 29 (02) :405-417
[4]  
Conti A., 2020, SEMIN CANCER BIOL, V1, P323
[5]   The prognostic significance of multiple morphologic features and biologic markers in ductal carcinoma in situ of the breast - A study of a large cohort of patients treated with surgery alone [J].
Cornfield, DB ;
Palazzo, JP ;
Schwartz, GF ;
Goonewardene, SA ;
Kovatich, AJ ;
Chervoneva, I ;
Hyslop, T ;
Schwarting, R .
CANCER, 2004, 100 (11) :2317-2327
[6]   Understanding a ductal carcinoma in situ diagnosis: patient views and surgeon descriptions [J].
Davey, C. ;
White, V. ;
Warne, C. ;
Kitchen, P. ;
Villanueva, E. ;
Erbas, B. .
EUROPEAN JOURNAL OF CANCER CARE, 2011, 20 (06) :776-784
[7]   Her2 and Ki67 Biomarkers Predict Recurrence of Ductal Carcinoma in Situ [J].
Davis, James E. ;
Nemesure, Barbara ;
Mehmood, Saira ;
Nayi, Vipul ;
Burke, Stephanie ;
Brzostek, Sabrina R. ;
Singh, Meenakshi .
APPLIED IMMUNOHISTOCHEMISTRY & MOLECULAR MORPHOLOGY, 2016, 24 (01) :20-25
[8]   A rapid volume of interest-based approach of radiomics analysis of breast MRI for tumor decoding and phenotyping of breast cancer [J].
Demircioglu, Aydin ;
Grueneisen, Johannes ;
Ingenwerth, Marc ;
Hoffmann, Oliver ;
Pinker-Domenig, Katja ;
Morris, Elizabeth ;
Haubold, Johannes ;
Forsting, Michael ;
Nensa, Felix ;
Umutlu, Lale .
PLOS ONE, 2020, 15 (06)
[9]   Social Group Optimization-Assisted Kapur's Entropy and Morphological Segmentation for Automated Detection of COVID-19 Infection from Computed Tomography Images [J].
Dey, Nilanjan ;
Rajinikanth, V ;
Fong, Simon James ;
Kaiser, M. Shamim ;
Mahmud, Mufti .
COGNITIVE COMPUTATION, 2020, 12 (05) :1011-1023
[10]   Overdiagnosis in breast imaging [J].
Evans, Andy ;
Vinnicombe, Sarah .
BREAST, 2017, 31 :270-273