Sudden cardiac death multiparametric classification system for Chagas heart disease?s patients based on clinical data and 24-hours ECG monitoring

被引:3
作者
Cavalcante, Carlos H. L. [1 ,2 ]
Primo, Pedro E. O. [3 ]
Sales, Carlos A. F. [1 ]
Caldas, Weslley L. [3 ]
Silva, Joao H. M. [4 ]
Souza, Amauri H. [1 ]
Marinho, Emmanuel S. [2 ]
Pedrosa, Roberto C. [5 ]
Marques, Joao A. L. [6 ]
Santos, Helcio S. [2 ]
Madeiro, Joao P. V. [3 ]
机构
[1] Fed Inst Educ & Technol Ceara, Maracanau, Ceara, Brazil
[2] Univ Estadual Ceara, Ctr Sci & Technol, Fortaleza, Ceara, Brazil
[3] Univ Fed Ceara, Comp Sci Dept, Fortaleza, Ceara, Brazil
[4] Oswaldo Cruz Fdn Fiocruz, Eusebio, Ceara, Brazil
[5] Univ Fed Rio de Janeiro, Edson Saad Heart Inst, Rio De Janeiro, Brazil
[6] Univ St Joseph, Lab Appl Neurosci, Macau, Peoples R China
关键词
sudden cardiac death; Chagas heart disease; machine learning; ECG; RISK SCORE; PREDICTION;
D O I
10.3934/mbe.2023402
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
About 6.5 million people are infected with Chagas disease (CD) globally, and WHO es-timates that >1 million people worldwide suffer from ChHD. Sudden cardiac death (SCD) represents one of the leading causes of death worldwide and affects approximately 65% of ChHD patients at a rate of 24 per 1000 patient-years, much greater than the SCD rate in the general population. Its occurrence in the specific context of ChHD needs to be better exploited. This paper provides the first evidence supporting the use of machine learning (ML) methods within non-invasive tests: patients??? clinical data and cardiac restitution metrics (CRM) features extracted from ECG-Holter recordings as an adjunct in the SCD risk assessment in ChHD. The feature selection (FS) flows evaluated 5 different groups of attributes formed from patients??? clinical and physiological data to identify relevant attributes among 57 features reported by 315 patients at HUCFF-UFRJ. The FS flow with FS techniques (variance, ANOVA, and recursive feature elimination) and Naive Bayes (NB) model achieved the best classifica-tion performance with 90.63% recall (sensitivity) and 80.55% AUC. The initial feature set is reduced to a subset of 13 features (4 Classification; 1 Treatment; 1 CRM; and 7 Heart Tests). The proposed method represents an intelligent diagnostic support system that predicts the high risk of SCD in ChHD patients and highlights the clinical and CRM data that most strongly impact the final outcome.
引用
收藏
页码:9159 / 9178
页数:20
相关论文
共 57 条
[1]   Sudden cardiac death: epidemiology and risk factors [J].
Adabag, A. Selcuk ;
Luepker, Russell V. ;
Roger, Veronique L. ;
Gersh, Bernard J. .
NATURE REVIEWS CARDIOLOGY, 2010, 7 (04) :216-225
[2]   Association between circadian Holter ECG changes and sudden cardiac death in patients with Chagas heart disease [J].
Alberto, Alex Chaves ;
Pedrosa, Roberto Coury ;
Zarzoso, Vicente ;
Nadal, Jurandir .
PHYSIOLOGICAL MEASUREMENT, 2020, 41 (02)
[3]   A Personalized Healthcare Monitoring System for Diabetic Patients by Utilizing BLE-Based Sensors and Real-Time Data Processing [J].
Alfian, Ganjar ;
Syafrudin, Muhammad ;
Ijaz, Muhammad Fazal ;
Syaekhoni, M. Alex ;
Fitriyani, Norma Latif ;
Rhee, Jongtae .
SENSORS, 2018, 18 (07)
[4]   A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion [J].
Ali, Farman ;
El-Sappagh, Shaker ;
Islam, S. M. Riazul ;
Kwak, Daehan ;
Ali, Amjad ;
Imran, Muhammad ;
Kwak, Kyung-Sup .
INFORMATION FUSION, 2020, 63 :208-222
[5]   Supervised, Unsupervised, and Semi-Supervised Feature Selection: A Review on Gene Selection [J].
Ang, Jun Chin ;
Mirzal, Andri ;
Haron, Habibollah ;
Hamed, Haza Nuzly Abdull .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2016, 13 (05) :971-989
[6]   Does Tpeak-Tend provide an index of transmural dispersion of repotarization? [J].
Antzelevitch, Charles ;
Sicouri, Serge ;
Di Diego, Jose M. ;
Burashnikov, Alexander ;
Viskin, Sami ;
Shimizu, Wataru ;
Yan, Gan-Xin ;
Kowey, Peter ;
Zhang, Li .
HEART RHYTHM, 2007, 4 (08) :1114-1116
[7]   Ventricular Arrhythmia and Life-Threatening Events in Patients With Repaired Tetralogy of Fallot [J].
Atallah, Joseph ;
Corcia, M. Cecilia Gonzalez ;
Walsh, Edward P. .
AMERICAN JOURNAL OF CARDIOLOGY, 2020, 132 :126-132
[8]   Machine learning in sudden cardiac death risk prediction: a systematic review [J].
Barker, Joseph ;
Li, Xin ;
Khavandi, Sarah ;
Koeckerling, David ;
Mavilakandy, Akash ;
Pepper, Coral ;
Bountziouka, Vasiliki ;
Chen, Long ;
Kotb, Ahmed ;
Antoun, Ibrahim ;
Mansir, John ;
Smith-Byrne, Karl ;
Schlindwein, Fernando S. ;
Dhutia, Harshil ;
Tyukin, Ivan ;
Nicolson, William B. ;
Andre Ng, G. .
EUROPACE, 2022, 24 (11) :1777-1787
[9]   Accuracy of a probabilistic record-linkage methodology used to track blood donors in the Mortality Information System database [J].
Capuani, Ligia ;
Bierrenbach, Ana Luiza ;
Abreu, Fatima ;
Takecian, Pedro Losco ;
Ferreira, Joao Eduardo ;
Sabino, Ester Cerdeira .
CADERNOS DE SAUDE PUBLICA, 2014, 30 (08) :1623-1632
[10]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)