A Generalization of Fibonacci and Lucas Quaternions

被引:20
作者
Polatli, Emrah [1 ]
机构
[1] Bulent Ecevit Univ, Fac Sci & Arts, Dept Math, TR-67100 Zonguldak, Turkey
关键词
Generalized Fibonacci quaternions; Generalized Lucas quaternions; Extended Binet formulas; IDENTITIES;
D O I
10.1007/s00006-015-0626-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a generalization of the Fibonacci and Lucas quaternions. We obtain the Binet formulas, generating functions, and some certain identities for these quaternions which include generalizations of some results of Halici.
引用
收藏
页码:719 / 730
页数:12
相关论文
共 50 条
  • [41] On a ternary generalization of Jordan algebras
    Kaygorodov, Ivan
    Pozhidaev, Alexander
    Saraiva, Paulo
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (06) : 1074 - 1102
  • [42] A GENERALIZATION ON DERIVATIONS OF LIE ALGEBRAS
    Chang, Hongliang
    Chen, Yin
    Zhang, Runxuan
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (03): : 2457 - 2473
  • [43] A new generalization of binomial coefficients
    Lassalle, Michel
    RAMANUJAN JOURNAL, 2014, 34 (01) : 143 - 156
  • [44] A NOTE ON PELL-PADOVAN NUMBERS AND THEIR CONNECTION WITH FIBONACCI NUMBERS
    Goy, T.
    Sharyn, S.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2020, 12 (02) : 280 - 288
  • [45] IDENTITIES FOR LIKE-POWERS OF LUCAS SEQUENCES FROM ALGEBRAIC IDENTITIES
    Cooper, Curtis
    COLLOQUIUM MATHEMATICUM, 2017, 149 (02) : 165 - 177
  • [46] A new generalization of the Bernoulli and related polynomials
    Srivastava, H. M.
    Garg, M.
    Choudhary, S.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2010, 17 (02) : 251 - 261
  • [47] ON A NEW GENERALIZATION OF OSTROWSKI TYPE INEQUALITY
    Pachpatte, B. G.
    TAMKANG JOURNAL OF MATHEMATICS, 2007, 38 (04): : 335 - 339
  • [48] A generalization of the Widder potential transform and applications
    Dernek, Nese
    Kurt, Veli
    Simsek, Yilmaz
    Yurekli, Osman
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (06) : 391 - 401
  • [49] On the generalization of Mersenne and Gaussian Mersenne polynomials
    Kumari, Munesh
    Prasad, Kalika
    Tanti, Jagmohan
    JOURNAL OF ANALYSIS, 2024, 32 (02) : 931 - 947
  • [50] A New Hybrid Generalization of Balancing Polynomials
    Brod, Dorota
    Rubajczyk, Mariola
    Szynal-Liana, Anetta
    SYMMETRY-BASEL, 2024, 16 (10):