A Generalization of Fibonacci and Lucas Quaternions

被引:20
作者
Polatli, Emrah [1 ]
机构
[1] Bulent Ecevit Univ, Fac Sci & Arts, Dept Math, TR-67100 Zonguldak, Turkey
关键词
Generalized Fibonacci quaternions; Generalized Lucas quaternions; Extended Binet formulas; IDENTITIES;
D O I
10.1007/s00006-015-0626-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a generalization of the Fibonacci and Lucas quaternions. We obtain the Binet formulas, generating functions, and some certain identities for these quaternions which include generalizations of some results of Halici.
引用
收藏
页码:719 / 730
页数:12
相关论文
共 50 条
  • [31] On the reciprocal sum of the fourth power of Fibonacci numbers
    Hwang, WonTae
    Park, Jong-Do
    Song, Kyunghwan
    OPEN MATHEMATICS, 2022, 20 (01): : 1642 - 1655
  • [32] A TRIPLE FIBONACCI SUM AND SOME HISTORICAL NOTES
    Tuenter, Hans J. H.
    FIBONACCI QUARTERLY, 2023, 61 (04): : 361 - 366
  • [33] On Third-Order Bronze Fibonacci Numbers
    Akbiyik, Muecahit
    Alo, Jeta
    MATHEMATICS, 2021, 9 (20)
  • [34] Melham's sums for some Lucas polynomial sequences
    Chung, Chan-Liang
    Zhong, Chunmei
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2024, 30 (02) : 383 - 409
  • [35] On a generalization of a theorem by Euler
    Swanepoel, Jan W. H.
    JOURNAL OF NUMBER THEORY, 2015, 149 : 46 - 56
  • [36] BINOMIAL TRANSFORMS OF THE BALANCING AND LUCAS-BALANCING POLYNOMIALS
    Yilmaz, Nazmiye
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2020, 15 (03) : 133 - 144
  • [37] On two types of (2, k)-distance Lucas numbers
    Bednarz, Urszula
    Brod, Dorota
    Wolowiec-Musial, Malgorzata
    ARS COMBINATORIA, 2014, 115 : 467 - 479
  • [38] ON THE k-MERSENNE AND k-MERSENNE-LUCAS OCTONIONS
    Kumari, M.
    Prasad, K.
    Mahato, H.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (03): : 1218 - 1230
  • [39] Combinatorial sums associated with balancing and Lucas-balancing polynomials
    Frontczak, Robert
    Goy, Taras
    ANNALES MATHEMATICAE ET INFORMATICAE, 2020, 52 : 97 - 105
  • [40] On the power sum problem of Lucas polynomials and its divisible property
    Xiao, Wang
    OPEN MATHEMATICS, 2018, 16 : 698 - 703