Disordered Nanomaterials for Chemielectric Vapor Sensing: A Review

被引:18
作者
Snow, Arthur W. [1 ]
Perkins, F. Keith [1 ]
Ancona, Mario G. [1 ]
Robinson, Jeremy T. [1 ]
Snow, Eric S. [1 ]
Foos, Edward E. [2 ]
机构
[1] US Naval Res Lab, Washington, DC 20375 USA
[2] Naval Surface Warfare Ctr, Indian Head, MD 20640 USA
关键词
Carbon nanotubes; chemical vapor sensors; disorder; gold nanoclusters; nanomaterials; reduced graphene oxide; chemielectric point sensing; CARBON NANOTUBES; CHEMICAL-DETECTION; GOLD; GRAPHENE; CHEMIRESISTOR; SENSORS; NANOPARTICLES; METAL; RESISTIVITY; COMPOSITES;
D O I
10.1109/JSEN.2014.2364677
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Although robust chemical vapor detection by chemielectric point sensors remains as a largely unmet challenge at present, the best performance to date and the most likely avenue for future progress is with sensor designs in which the transductive element is a disordered nanostructured material. We here review the evidence for this claim, with illustrations drawn from recent work on sensors made from gold nanoparticles, carbon nanotubes, and reduced graphene oxide nanoplatelets. These examples can be regarded as being prototypical of disordered nanostructured films formed of primitive objects that are nanoscopic in 3-D, 2-D, and 1-D, respectively.
引用
收藏
页码:1301 / 1320
页数:20
相关论文
共 83 条
[21]   Metallic nanostructured materials based sensors [J].
Drake, C. ;
Deshpande, S. ;
Bera, D. ;
Seal, S. .
INTERNATIONAL MATERIALS REVIEWS, 2007, 52 (05) :289-317
[22]   All-Organic Vapor Sensor Using Inkjet-Printed Reduced Graphene Oxide [J].
Dua, Vineet ;
Surwade, Sumedh P. ;
Ammu, Srikanth ;
Agnihotra, Srikanth Rao ;
Jain, Sujit ;
Roberts, Kyle E. ;
Park, Sungjin ;
Ruoff, Rodney S. ;
Manohar, Sanjeev K. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (12) :2154-2157
[23]   SWNT growth by CVD on Ferritin-based iron catalyst nanoparticles towards CNT sensors [J].
Durrer, L. ;
Helbling, T. ;
Zenger, C. ;
Jungen, A. ;
Stampfer, C. ;
Hierold, C. .
SENSORS AND ACTUATORS B-CHEMICAL, 2008, 132 (02) :485-490
[24]   Practical Chemical Sensors from Chemically Derived Graphene [J].
Fowler, Jesse D. ;
Allen, Matthew J. ;
Tung, Vincent C. ;
Yang, Yang ;
Kaner, Richard B. ;
Weiller, Bruce H. .
ACS NANO, 2009, 3 (02) :301-306
[25]   Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? [J].
Franke, ME ;
Koplin, TJ ;
Simon, U .
SMALL, 2006, 2 (01) :36-50
[26]   Composites of carboxylate-capped TiO2 nanoparticles and carbon black as chemiresistive vapor sensors [J].
Garcia-Berrios, Edgardo ;
Gao, Ting ;
Walker, Don ;
Brunschwig, Bruce S. ;
Lewis, Nathan S. .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 158 (01) :17-22
[27]   Response versus Chain Length of Alkanethiol-Capped Au Nanoparticle Chemiresistive Chemical Vapor Sensors [J].
Garcia-Berrios, Edgardo ;
Gao, Ting ;
Woodka, Marc D. ;
Maldonado, Stephen ;
Brunschwig, Bruce S. ;
Ellsworth, Mark W. ;
Lewis, Nathan S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (50) :21914-21920
[28]   A chemical route to graphene for device applications [J].
Gilje, Scott ;
Han, Song ;
Wang, Minsheng ;
Wang, Kang L. ;
Kaner, Richard B. .
NANO LETTERS, 2007, 7 (11) :3394-3398
[29]   Acoustic wave microsensor arrays for vapor sensing [J].
Grate, JW .
CHEMICAL REVIEWS, 2000, 100 (07) :2627-2647
[30]   Metal-insulator-semiconductor electrostatics of carbon nanotubes [J].
Guo, J ;
Goasguen, S ;
Lundstrom, M ;
Datta, S .
APPLIED PHYSICS LETTERS, 2002, 81 (08) :1486-1488