A unified study of crack propagation in amorphous silica: Using experiments and simulations

被引:48
作者
Rountree, C. L. [1 ]
Prades, S.
Bonamy, D.
Bouchaud, E.
Kalia, R.
Guillot, C.
机构
[1] CEA Saclay, Serv Phys & Chim Surfaces & Interfaces, DSM DRECAM SPCSI, F-91191 Gif Sur Yvette, France
[2] ETH Honggerberg, Swiss Fed Inst Technol, Dept Mat, CH-8093 Zurich, Switzerland
[3] Univ So Calif, Dept Mat Sci & Engn, Collaboratory Adv Comp & Simulat, Los Angeles, CA 90089 USA
[4] Univ So Calif, Dept Phys & Astron, Collaboratory Adv Comp & Simulat, Los Angeles, CA 90089 USA
[5] Univ So Calif, Dept Comp Sci, Collaboratory Adv Comp & Simulat, Los Angeles, CA 90089 USA
[6] Univ So Calif, Dept Biomed Engn, Collaboratory Adv Comp & Simulat, Los Angeles, CA 90089 USA
关键词
fracture and cracks; corrosion fatigue; brittleness; AFM; simulations; silica;
D O I
10.1016/j.jallcom.2006.08.336
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomistic aspects of dynamic fracture in amorphous silica are investigated with molecular dynamics (MD) simulations. Simulations on amorphous silica were performed for two system sizes, 15 million and 113 million atoms. Crack propagation in these systems is accompanied by nucleation and growth of nanometer scale cavities up to 20 nm ahead of the crack tip. Cavities coalesce and merge with the advancing crack to cause mechanical failure. This scenario was also observed experimentally during stress corrosion ultra-slow fracture of glass using atomic force microscopy (F. Celarie et al., Phys. Rev. Lett. 90 (2003) 075504; S. Prades, D. Bonamy, D. Dalmas, E. Bouchaud, C. Guillot, Int. J. Sol. Struct. 42 (2004) 637). This mechanism has macroscopic consequences in terms of sample life-time and deformation field. The morphology of the fracture surfaces has also been studied by calculating the height-height correlation function. In general experiments reveal two universal roughness exponents, 0.5 for small length scales and 0.8 for large length scales. The MD simulations of the 15 million and 113 million atoms system find the first roughness exponent (0.5), but the second exponent (0.8) occurs over length scales inaccessible to MD simulations. Finally, the 113 million atoms simulation was used to map out the morphology and dynamics of the whole crack front. (C) 2006 Published by Elsevier B.V.
引用
收藏
页码:60 / 63
页数:4
相关论文
共 17 条
[1]   Scaling properties of cracks [J].
Bouchaud, E .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (21) :4319-4344
[2]   Glass breaks like metal, but at the nanometer scale -: art. no. 075504 [J].
Célarié, F ;
Prades, S ;
Bonamy, D ;
Ferrero, L ;
Bouchaud, E ;
Guillot, C ;
Marlière, C .
PHYSICAL REVIEW LETTERS, 2003, 90 (07) :4
[3]   Quantitative analysis of a fracture surface by atomic force microscopy [J].
Daguier, P ;
Henaux, S ;
Bouchaud, E ;
Creuzet, F .
PHYSICAL REVIEW E, 1996, 53 (06) :5637-5642
[4]  
Freund L. B., 1990, Dynamic fracture mechanics
[5]  
Griffith A.A., 1921, Philos. Trans. R. Soc. Lond. Ser. A, Contain. Pap. A Math. Or. Phys. Character, VA221, P163, DOI DOI 10.1098/RSTA.1921.0006
[6]  
Irwin G.R., 1958, Elasticity and Plasticity/Elastizitat und Plastizitat, P551
[7]   Multiresolution atomistic simulations of dynamic fracture in nanostructured ceramics and glasses [J].
Kalia, RK ;
Nakano, A ;
Vashishta, P ;
Rountree, CL ;
Van Brutzel, L ;
Ogata, S .
INTERNATIONAL JOURNAL OF FRACTURE, 2003, 121 (1-2) :71-79
[8]  
OROWAN E, 1955, ENERGY CRITERIA FRAC, V34, P157
[9]   Nano-ductile crack propagation in glasses under stress corrosion: spatiotemporal evolution of damage in the vicinity of the crack tip [J].
Prades, S ;
Bonamy, D ;
Dalmas, D ;
Bouchaud, E ;
Guillot, C .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2005, 42 (02) :637-645
[10]   Atomistic aspects of crack propagation in brittle materials: Multimillion atom molecular dynamics simulations [J].
Rountree, CL ;
Kalia, RK ;
Lidorikis, E ;
Nakano, A ;
Van Brutzel, L ;
Vashishta, P .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 :377-400