Changes in Expression of Aquaporin-4 and Aquaporin-9 in Optic Nerve after Crushing in Rats

被引:19
作者
Suzuki, Hiroyuki [1 ]
Oku, Hidehiro [1 ]
Horie, Taeko [1 ]
Morishita, Seita [1 ]
Tonari, Masahiro [1 ]
Oku, Kazuma [1 ]
Okubo, Akiko [1 ]
Kida, Teruyo [1 ]
Mimura, Masashi [1 ]
Fukumoto, Masanori [1 ]
Kojima, Shota [1 ]
Takai, Shinji [1 ]
Ikeda, Tsunehiko [1 ]
机构
[1] Osaka Med Coll, Dept Ophthalmol, Osaka, Japan
关键词
RETINAL GANGLION-CELLS; DIABETIC-RETINOPATHY; WATER TRANSPORT; BRAIN EDEMA; GLIAL-CELLS; INJURY; KIR4.1; MICE; REGENERATION; SURVIVAL;
D O I
10.1371/journal.pone.0114694
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The purpose of this study was to determine the temporal and spatial changes in the expression of AQP4 and AQP9 in the optic nerve after it is crushed. The left optic nerves of rats were either crushed (crushed group) or sham operated (sham group), and they were excised before, and at 1, 2, 4, 7, and 14 days later. Four optic nerves were pooled for each time point in both groups. The expression of AQP4 and AQP9 was determined by western blot analyses. Immunohistochemistry was used to determine the spatial expression of AQP4, AQP9, and GFAP in the optic nerve. Optic nerve edema was determined by measuring the water content in the optic nerve. The barrier function of the optic nerve vessels was determined by the extravasated Evans blue dye on days 7 and 14. The results showed that the expression of AQP4 was increased on day 1 but the level was significantly lower than that in the sham group on days 4 and 7 (P<0.05). In contrast, the expression of AQP9 gradually increased, and the level was significantly higher than that in the sham group on days 7 and 14 (P<0.05, Tukey-Kramer). The down-regulation of AQP4 was associated with crush-induced optic nerve edema, and the water content of the nerve was significantly increased by 4.3% in the crushed optic nerve from that of the untouched fellow nerve on day 7. The expression of AQP4 and GFAP was reduced at the crushed site where AQP4-negative and AQP9-positive astrocytes were present. The barrier function was impaired at the crushed site on days 7 and 14, restrictedly where AQP4-negative and AQP9-positive astrocytes were present. The presence of AQP9-positive astrocytes at the crushed site may counteract the metabolic damage but this change did not fully compensate for the barrier function defect.
引用
收藏
页数:17
相关论文
共 39 条
[1]   The molecular basis of water transport in the brain [J].
Amiry-Moghaddam, M ;
Ottersen, OP .
NATURE REVIEWS NEUROSCIENCE, 2003, 4 (12) :991-1001
[2]   Distribution and possible roles of aquaporin 9 in the brain [J].
Badaut, J ;
Regli, L .
NEUROSCIENCE, 2004, 129 (04) :971-981
[3]   AQUAGLYCEROPORIN 9 IN BRAIN PATHOLOGIES [J].
Badaut, J. .
NEUROSCIENCE, 2010, 168 (04) :1047-1057
[4]   Aquaporins in brain: Distribution, physiology, and pathophysiology [J].
Badaut, T ;
Lasbennes, T ;
Magistretti, PJ ;
Regli, L .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2002, 22 (04) :367-378
[5]   A developmental switch in the expression of aquaporin-4 and Kir4.1 from horizontal to Muller cells in mouse retina [J].
Bosco, A ;
Cusato, K ;
Nicchia, GP ;
Frigeri, A ;
Spray, DC .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2005, 46 (10) :3869-3875
[6]   Aquaporin 4 knockdown exacerbates streptozotocin-induced diabetic retinopathy through aggravating inflammatory response [J].
Cui, Bei ;
Sun, Jin-Hua ;
Xiang, Fen-Fen ;
Liu, Lin ;
Li, Wen-Jie .
EXPERIMENTAL EYE RESEARCH, 2012, 98 :37-43
[7]   Aquaporin-4 gene disruption in mice protects against impaired retinal function and cell death after ischemia [J].
Da, T ;
Verkman, AS .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2004, 45 (12) :4477-4483
[8]   Kir4.1 channels regulate swelling of astroglial processes in experimental spinal cord edema [J].
Dibaj, Payam ;
Kaiser, Melanie ;
Hirrlinger, Johannes ;
Kirchhoff, Frank ;
Neusch, Clemens .
JOURNAL OF NEUROCHEMISTRY, 2007, 103 (06) :2620-2628
[9]   Stress-induced changes in neuronal Aquaporin-9 (AQP9) in a retinal ganglion cell-line [J].
Dibas, Adnan ;
Yang, Ming-Hui ;
Bobich, Joseph ;
Yorio, Thomas .
PHARMACOLOGICAL RESEARCH, 2007, 55 (05) :378-384
[10]  
Dibas A, 2010, MOL VIS, V16, P330