Stability of inverse bicontinuous cubic phases in lipid-water mixtures

被引:67
作者
Schwarz, US [1 ]
Gompper, G
机构
[1] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel
[2] Forschungszentrum, Inst Festkorperforsch, D-52425 Julich, Germany
关键词
D O I
10.1103/PhysRevLett.85.1472
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the stability of seven inverse bicontinuous cubic phases [G, D, P, C(P), S, I-WP, F-RD] in lipid-water mixtures based on a curvature model of membranes. Lipid monolayers are described by parallel surfaces to triply periodic minimal surfaces. The phase behavior is determined by the distribution of the Gaussian curvature on the minimal surface and the porosity of each structure. Only G, D, and P are found to be stable, and to coexist along a triple line. The calculated phase diagram agrees very well with experimental results for 2:1 lauric acid/DLPC.
引用
收藏
页码:1472 / 1475
页数:4
相关论文
共 19 条
[1]   GEOMETRICAL ASPECTS OF THE FRUSTRATION IN THE CUBIC PHASES OF LYOTROPIC LIQUID-CRYSTALS [J].
ANDERSON, DM ;
GRUNER, SM ;
LEIBLER, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (15) :5364-5368
[3]  
DAVID F, 1989, STAT MECH MEMBRANES, P157
[4]  
DUSING PM, 1997, LANGMUIR, V13, P351
[5]   ON 3-PERIODIC MINIMAL-SURFACES [J].
FISCHER, W ;
KOCH, E .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1987, 179 (1-4) :31-52
[6]  
FODGEN A, 1999, EUR PHYS J B, V7, P91
[7]   STERIC INTERACTIONS IN MULTIMEMBRANE SYSTEMS - A MONTE-CARLO STUDY [J].
GOMPPER, G ;
KROLL, DM .
EUROPHYSICS LETTERS, 1989, 9 (01) :59-64
[8]  
HELFRICH W, 1978, Z NATURFORSCH A, V33, P305
[9]  
Helfrich W., 1990, J PHYS-PARIS, V51, pC7
[10]   Bicontinuous structures in lyotropic liquid crystals and crystalline hyperbolic surfaces [J].
Hyde, ST .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 1996, 1 (05) :653-662