Independent Sets in Tensor Products of Three Vertex-transitive Graphs

被引:0
作者
Mao, Huiqun [1 ]
Zhang, Huajun [2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Shaoxing Univ, Dept Math, Shaoxing 312000, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2021年 / 25卷 / 02期
基金
中国国家自然科学基金;
关键词
direct product; tensor product; primitivity; independence number; vertex-transitive graph; THEOREM; POWERS;
D O I
10.11650/tjm/210104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The tensor product T(G(1), G(2), G(3)) of graphs G(1), G(2) and G(3) is defined by V T(G(1), G(2), G(3)) = V(G(1)) x V(G(2)) x V(G(3)) and ET(G(1), G(2), G(3)) = {vertical bar(u(1), u(2), u(3)), (v(1), v(2), v(3))]vertical bar : vertical bar{i : (u(i), v(i)) is an element of E(G(i))}vertical bar >= 2}. From this definition, it is easy to see that the preimage of the direct product of two independent sets of two factors under projections is an independent set of T(G(1), G(2), G(3)). So alpha T(G(1), G(2), G(3)) >= max{alpha(G(1))alpha(G(2))vertical bar G(3)vertical bar, alpha(G(1))alpha(G(3))vertical bar G(2)vertical bar, alpha(G(2))alpha(G(3))vertical bar G(1)vertical bar}. In this paper, we prove that the equality holds if G(1) and G(2) are vertex-transitive graphs and G(3) is a circular graph, a Kneser graph, or a permutation graph. Furthermore, in this case, the structure of all maximum independent sets of T(G(1), G(2), G(3)) is determined.
引用
收藏
页码:207 / 222
页数:16
相关论文
共 18 条
[1]   The intersection theorem for direct products [J].
Ahlswede, R ;
Aydinian, H ;
Khachatrian, LH .
EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (06) :649-661
[2]   HOMOMORPHISMS OF 3-CHROMATIC GRAPHS [J].
ALBERTSON, MO ;
COLLINS, KL .
DISCRETE MATHEMATICS, 1985, 54 (02) :127-132
[3]   Intersecting families of permutations [J].
Cameron, PJ ;
Ku, CY .
EUROPEAN JOURNAL OF COMBINATORICS, 2003, 24 (07) :881-890
[4]   An Erdos-Ko-Rado theorem for direct products [J].
Frankl, P .
EUROPEAN JOURNAL OF COMBINATORICS, 1996, 17 (08) :727-730
[5]   Structure of independent sets in direct products of some vertex-transitive graphs [J].
Geng, Xing Bo ;
Wang, Jun ;
Zhang, Hua Jun .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (04) :697-706
[6]  
Jha PK, 1998, ARS COMBINATORIA, V50, P53
[7]  
Katona G., 1972, J. Comb. Theory, Ser. B, V13, P183
[8]  
Ku CY, 2007, ELECTRON J COMB, V14
[9]   Independent Sets of Maximal Size in Tensor Powers of Vertex-Transitive Graphs [J].
Ku, Cheng Yeaw ;
McMillan, Benjamin B. .
JOURNAL OF GRAPH THEORY, 2009, 60 (04) :295-301
[10]   Projectivity and independent sets in powers of graphs [J].
Larose, B ;
Tardif, C .
JOURNAL OF GRAPH THEORY, 2002, 40 (03) :162-171