Accounting for input-model and input-parameter uncertainties in simulation

被引:65
作者
Zouaoui, F
Wilson, JR
机构
[1] Sabre Holdings, Res Grp, Southlake, TX 76092 USA
[2] N Carolina State Univ, Dept Ind Engn, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
D O I
10.1080/07408170490500708
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To account for the input-model and input-parameter uncertainties inherent in many simulations as well as the usual stochastic uncertainty, we present a Bayesian input-modeling technique that yields improved point and confidence-interval estimators for a selected posterior mean response. Exploiting prior information to specify the prior probabilities of the postulated input models and the associated prior input-parameter distributions, we use sample data to compute the posterior input-model and input-parameter distributions. Our Bayesian simulation replication algorithm involves: (i) estimating parameter uncertainty by randomly sampling the posterior input-parameter distributions; (ii) estimating stochastic uncertainty by running independent replications of the simulation using each set of input-model parameters sampled in (i); and (iii) estimating input-model uncertainty by weighting the responses generated in (ii) using the corresponding posterior input-model probabilities. Sampling effort is allocated among input models to minimize final point-estimator variance subject to a computing-budget constraint. A queueing simulation demonstrates the advantages of this approach.
引用
收藏
页码:1135 / 1151
页数:17
相关论文
共 37 条
[1]  
[Anonymous], P 1999 WINT SIM C
[2]  
[Anonymous], 9814 COL STAT U DEP
[3]   Integrated variance reduction strategies for simulation [J].
Avramidis, AN ;
Wilson, JR .
OPERATIONS RESEARCH, 1996, 44 (02) :327-346
[4]   Decomposition of Needle Litter in Pinus contorta and Pinus sylvestris Monocultures-a Comparison [J].
Berg, Bjorn ;
Lundmark, Jan-Erik .
SCANDINAVIAN JOURNAL OF FOREST RESEARCH, 1987, 2 (1-4) :3-12
[5]  
BERGER J. O., 2013, Statistical Decision Theory and Bayesian Analysis, DOI [10.1007/978-1-4757-4286-2, DOI 10.1007/978-1-4757-4286-2]
[6]   The intrinsic Bayes factor for model selection and prediction [J].
Berger, JO ;
Pericchi, LR .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) :109-122
[7]   Two-point methods for assessing variability in simulation output [J].
Cheng, RCH ;
Holland, W .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1998, 60 (03) :183-205
[8]   Sensitivity of computer simulation experiments to errors in input data [J].
Cheng, RCH ;
Holland, W .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1997, 57 (1-4) :219-241
[9]  
CHENG RCH, 2004, IN PRESS ACM T MOD C, V14
[10]   Input distribution selection for simulation experiments: Accounting for input uncertainty [J].
Chick, SE .
OPERATIONS RESEARCH, 2001, 49 (05) :744-758