Natural neighbor-based clustering algorithm with local representatives

被引:59
作者
Cheng, Dongdong [1 ]
Zhu, Qingsheng [1 ]
Huang, Jinlong [1 ]
Yang, Lijun [1 ]
Wu, Quanwang [1 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing Key Lab Software Theory & Technol, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Clustering; Natural neighbor; Local representatives; DENSITY; SEARCH;
D O I
10.1016/j.knosys.2017.02.027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering by identifying cluster centers is important for detecting patterns in a data set. However, many center-based clustering algorithms cannot process data sets containing non-spherical clusters. In this paper, we propose a novel clustering algorithm called NaNLORE based on natural neighbor and local representatives. Natural neighbor is a new neighbor concept and introduced to compute local density and find local representatives which are points with local maximum density. We first find local representatives and then select cluster centers from the local representatives. The density-adaptive distance is introduced to measure the distance between local representatives, which helps to solve the problem of clustering data sets with complex manifold structure. Cluster centers are characterized by higher density than their neighbors and a relatively large density-adaptive distance from any local representatives with higher density. In experiments, we compare the proposed algorithm NaNLORE with existing algorithms on synthetic and real data sets. Results show that NaNLORE performs better than existing algorithm, especially on clustering non-spherical data and manifold data. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:238 / 253
页数:16
相关论文
共 40 条
[11]   Robust outlier detection using the instability factor [J].
Ha, Jihyun ;
Seok, Seulgi ;
Lee, Jong-Seok .
KNOWLEDGE-BASED SYSTEMS, 2014, 63 :15-23
[12]   A non-parameter outlier detection algorithm based on Natural Neighbor [J].
Huang, Jinlong ;
Zhu, Qingsheng ;
Yang, Lijun ;
Feng, Ji .
KNOWLEDGE-BASED SYSTEMS, 2016, 92 :71-77
[13]  
Jain A.K., 2005, DATA CLUSTERING USER, P1
[14]   CLUSTERING USING A SIMILARITY MEASURE BASED ON SHARED NEAR NEIGHBORS [J].
JARVIS, RA ;
PATRICK, EA .
IEEE TRANSACTIONS ON COMPUTERS, 1973, C-22 (11) :1025-1034
[15]   A density-adaptive affinity propagation clustering algorithm based on spectral dimension reduction [J].
Jia, Hongjie ;
Ding, Shifei ;
Meng, Lingheng ;
Fan, Shuyan .
NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8) :1557-1567
[16]   Chameleon: Hierarchical clustering using dynamic modeling [J].
Karypis, G ;
Han, EH ;
Kumar, V .
COMPUTER, 1999, 32 (08) :68-+
[17]   STEP-WISE CLUSTERING PROCEDURES [J].
KING, B .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1967, 62 (317) :86-&
[18]   Delta-density based clustering with a divide-and-conquer strategy: 3DC clustering [J].
Liang, Zhou ;
Chen, Pei .
PATTERN RECOGNITION LETTERS, 2016, 73 :52-59
[19]   Boosting the K-Nearest-Neighborhood based incremental collaborative filtering [J].
Luo, Xin ;
Xia, Yunni ;
Zhu, Qingsheng ;
Li, Yi .
KNOWLEDGE-BASED SYSTEMS, 2013, 53 :90-99
[20]  
MacQueen, 1967, BERK S MATH STAT PRO, DOI DOI 10.1007/S11665-016-2173-6