Electrochemical reduction of CO2 to formate catalyzed by electroplated tin coating on copper foam

被引:89
|
作者
Wang, Yan [1 ]
Zhou, Jing [1 ]
Lv, Weixin [2 ]
Fang, Hailin [2 ]
Wang, Wei [2 ]
机构
[1] Anqing Normal Univ, Sch Chem & Chem Engn, Anhui Prov Lab Optoelect & Magnetism Funct Mat, Anqing 246011, Peoples R China
[2] Yancheng Inst Technol, Sch Chem & Chem Engn, Yancheng 224051, Peoples R China
关键词
Tin; Electrodeposition; Copper foam; Electrocatalytic reduction; Carbon dioxide; Formate; CARBON-DIOXIDE; SELECTIVITY; ELECTRODES; EFFICIENCY;
D O I
10.1016/j.apsusc.2015.11.255
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sn/f-Cu electrode has been prepared by electrodeposition Sn on a Cu foam substrate in aqueous plating solution, which has been used as the cathode for electrochemical reduction of carbon dioxide (CO2) in aqueous KHCO3 solution. Here, we have explored the effects of the deposition time and the electrolysis potential on the Faradaic efficiency for producing formate. The results demonstrate that maximum Faradaic efficiency of 83.5% is obtained at-1.8 V vs. Ag/AgCl when the Sn/f-Cu electrode is prepared by electrodeposition for 35 min. The Sn/f-Cu electrode exhibits excellent catalytic activity for CO2 reduction compared with the Cu foam electrode and the Sn plate electrode. The average current density and the production rate of formate for the Sn/f-Cu electrode are more than twice those for the Sn plate electrode during electrochemical reduction of CO2. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:394 / 398
页数:5
相关论文
共 50 条
  • [1] CuSnBi Catalyst Grown on Copper Foam by Co-Electrodeposition for Efficient Electrochemical Reduction of CO2 to Formate
    Xie, Hangxin
    Lv, Li
    Sun, Yuan
    Wang, Chunlai
    Xu, Jialin
    Tang, Min
    CATALYSTS, 2024, 14 (03)
  • [2] Nanoporous tin oxides for efficient electrochemical CO2 reduction to formate
    Liu, Hai
    Miao, Baiyu
    Chuai, Hongyuan
    Chen, Xiaoyi
    Zhang, Sheng
    Ma, Xinbin
    GREEN CHEMICAL ENGINEERING, 2022, 3 (02) : 138 - 145
  • [3] Nanoporous tin oxides for efficient electrochemical CO2 reduction to formate
    Hai Liu
    Baiyu Miao
    Hongyuan Chuai
    Xiaoyi Chen
    Sheng Zhang
    Xinbin Ma
    Green Chemical Engineering, 2022, 3 (02) : 138 - 145
  • [4] A highly selective tin-copper bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to formate
    Jiang, Xingxing
    Wang, Xikui
    Liu, Zhenjie
    Wang, Qinglong
    Xiao, Xin
    Pan, Haiping
    Li, Man
    Wang, Jiawei
    Shao, Yong
    Peng, Zhangquan
    Shen, Yan
    Wang, Mingkui
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 259
  • [5] Electrochemical reduction of CO2 on highly porous tin foam electrodes
    Sen, Sujat
    Liu, Dan
    Palmore, Tayhas
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [6] Electrochemical CO2 reduction to formate on Tin cathode: Influence of anode materials
    Jiang, Hao
    Zhao, Yuemin
    Wang, Lizhang
    Kong, Ying
    Li, Fei
    Li, Peng
    JOURNAL OF CO2 UTILIZATION, 2018, 26 : 408 - 414
  • [7] Electrodeposition of Bismuth Dendrites on Oxide-Derived Copper Foam Enhancing Electrochemical CO2 Reduction to Formate
    Xu, Jialin
    Lv, Li
    Wang, Chunlai
    Liang, Yun
    CATALYSTS, 2025, 15 (01)
  • [8] Electrochemical reduction of CO2 on highly porous copper foam electrodes
    Sen, Sujat
    Liu, Dan
    Palmore, Tayhas
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [9] Copper Gold Interactions Enhancing Formate Production from Electrochemical CO2 Reduction
    Tao, Zixu
    Wu, Zishan
    Yuan, Xiaolei
    Wu, Yueshen
    Wang, Hailiang
    ACS CATALYSIS, 2019, 9 (12) : 10894 - 10898
  • [10] Progress and perspectives for electrochemical CO2 reduction to formate
    Zou, Jinshuo
    Liang, Gemeng
    Lee, Chong-Yong
    Wallace, Gordon G.
    MATERIALS TODAY ENERGY, 2023, 38