Numerical solutions of chemical differential-algebraic equations

被引:21
作者
Çelik, E [1 ]
Karaduman, E [1 ]
Bayram, M [1 ]
机构
[1] Ataturk Univ, Fen Edebiyat Fak, Matemat Bolumu, T-25240 Erzurum, Turkey
关键词
differential-algebraic equation; arbitrary order; power series and Pade series;
D O I
10.1016/S0096-3003(02)00178-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the solution for a chemical differential algebraic equation (DAE) can be expanded up to arbitrary order using MAPLE computer algebra systems. First we calculate power series of the given equations system then transform it into Pade series form, which give an arbitrary order for solving chemical DAE numerically. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:259 / 264
页数:6
相关论文
共 13 条
[1]  
Ascher U.M., 1998, COMPUTER METHODS ORD, V61
[2]  
Brenan K. E., 1989, NUMERICAL SOLUTION I
[3]  
CELIK E, 2001, ARBITRARY ORDER NUME
[4]   SOLVING ORDINARY DIFFERENTIAL-EQUATIONS USING TAYLOR-SERIES [J].
CORLISS, G ;
CHANG, YF .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1982, 8 (02) :114-144
[5]   ONE-STEP AND EXTRAPOLATION METHODS FOR DIFFERENTIAL-ALGEBRAIC SYSTEMS [J].
DEUFLHARD, P ;
HAIRER, E ;
ZUGCK, J .
NUMERISCHE MATHEMATIK, 1987, 51 (05) :501-516
[6]  
Hairer E., 1991, SOLVING ORDINARY DIF
[7]  
Henrici P, 1974, APPLIED COMPUTATIONA, V1
[8]  
Hirayama H, 2000, 2 INT C MATH COMP PH
[9]   Getting around consistent initialization of DAE systems? [J].
Kroner, A ;
Marquardt, W ;
Gilles, ED .
COMPUTERS & CHEMICAL ENGINEERING, 1997, 21 (02) :145-158
[10]  
KRONER A, 1992, COMPUT CHEM ENG, V16, P131