Monitoring the Dynamic Regulation of the Mitochondrial GTP-to-GDP Ratio with a Genetically Encoded Fluorescent Biosensor

被引:11
作者
Zhang, Meiqi [1 ,2 ]
Yang, Bo [1 ,2 ]
Zhang, Jiayuan [1 ,2 ,3 ]
Song, Yuxin [1 ,2 ]
Wang, Weibo [1 ,2 ,4 ]
Li, Na [1 ,2 ]
Wang, Yuan [1 ,2 ]
Li, Wenzhe [1 ,2 ]
Wang, Jing [1 ,2 ]
机构
[1] Peking Univ, State Key Lab Nat & Biomimet Drugs, Beijing 100191, Peoples R China
[2] Peking Univ, Dept Chem Biol, Sch Pharmaceut Sci, Beijing 100191, Peoples R China
[3] Univ Oxford, Wellcome Ctr Human Genet, Roosevelt Dr, Oxford OX3 7BN, England
[4] Cent China Normal Univ, Key Lab Pesticide & Chem Biol, Minist Educ,Coll Chem, Int Joint Res Ctr Intelligent Biosensor Technol &, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Biosensor; GTP; GDP Ratio; Imaging; Metabolism; Mitochondria; LIVE CELLS; GLUCOSE; ATP; NUCLEOTIDES; INHIBITION; EXPRESSION; MECHANISM; SENSORS; EIF5B; STATE;
D O I
10.1002/anie.202201266
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The interconversion of guanosine triphosphate (GTP) and guanosine diphosphate (GDP) is known to be integral to a wide variety of biological cellular activities, yet to date there are no analytical methods available to directly detect the ratio of intracellular GTP to GDP. Herein, we report GRISerHR, a genetically encoded fluorescent biosensor to monitor the GTP : GDP ratio in multiple cell types and in various organelles under metabolic perturbation. Additionally, we characterized the differential mitochondrial GTP : GDP ratios resulting from genetic modulation of two isoforms of a tricarboxylic acid (TCA) cycle enzyme (succinyl-CoA synthetase; SCS-ATP and SCS-GTP) and of a phosphoenolpyruvate (PEP) cycle enzyme (PEPCK-M). Thus, our GRISerHR sensor achieves spatiotemporally precise detection of dynamic changes in the endogenous GTP : GDP ratio in living cells and can help deepen our understanding about the energy metabolic contributions of guanosine nucleotides in biology.
引用
收藏
页数:11
相关论文
共 49 条
[1]   Genetically encoded fluorescent indicator for intracellular hydrogen peroxide [J].
Belousov, VV ;
Fradkov, AF ;
Lukyanov, KA ;
Staroverov, DB ;
Shakhbazov, KS ;
Terskikh, AV ;
Lukyanov, S .
NATURE METHODS, 2006, 3 (04) :281-286
[2]  
Berg J, 2009, NAT METHODS, V6, P161, DOI [10.1038/NMETH.1288, 10.1038/nmeth.1288]
[3]  
Berg JM., 2002, Biochemistry, V5th
[4]  
Bianchi-Smiraglia A, 2017, NAT METHODS, V14, P1003, DOI [10.1038/NMETH.4404, 10.1038/nmeth.4404]
[5]   Microtubule dynamics: an interplay of biochemistry and mechanics [J].
Brouhard, Gary J. ;
Rice, Luke M. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2018, 19 (07) :451-463
[6]   Alterations in Hepatic Glucose and Energy Metabolism as a Result of Calorie and Carbohydrate Restriction [J].
Browning, Jeffrey D. ;
Weis, Brian ;
Davis, Jeannie ;
Satapati, Santhosh ;
Merritt, Matthew ;
Malloy, Craig R. ;
Burgess, Shawn C. .
HEPATOLOGY, 2008, 48 (05) :1487-1496
[7]   Characterization of nucleotide pools as a function of physiological state in Escherzchia coli [J].
Buckstein, Michael H. ;
He, Jian ;
Rubin, Harvey .
JOURNAL OF BACTERIOLOGY, 2008, 190 (02) :718-726
[8]   Biosensor reveals multiple sources for mitochondrial NAD+ [J].
Cambronne, Xiaolu A. ;
Stewart, Melissa L. ;
Kim, DongHo ;
Jones-Brunette, Amber M. ;
Morgan, Rory K. ;
Farrens, David L. ;
Cohen, Michael S. ;
Goodman, Richard H. .
SCIENCE, 2016, 352 (6292) :1474-1477
[9]   Mechanisms controlling pancreatic islet cell function in insulin secretion [J].
Campbell, Jonathan E. ;
Newgard, Christopher B. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2021, 22 (02) :142-158
[10]   A simple method to monitor hepatic gluconeogenesis and triglyceride synthesis following oral sugar tolerance test in obese adolescents [J].
Carreau, Anne-Marie ;
Jin, Eunsook S. ;
Garcia-Reyes, Yesenia ;
Rabat, Haseeb ;
Nadeau, Kristen J. ;
Malloy, Craig R. ;
Cree-Green, Melanie .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2019, 317 (01) :R134-R142