Stability conditions and cluster varieties from quivers of type A

被引:6
作者
Allegretti, Dylan G. L.
机构
基金
欧盟地平线“2020”;
关键词
Stability condition; Cluster variety; Quadratic differential; Monodronriy data; WKB analysis; POTENTIALS; CATEGORIES; MUTATIONS; ALGEBRAS; SYSTEMS;
D O I
10.1016/j.aim.2018.08.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the relationship between two spaces associated to a quiver with potential. The first is a complex manifold parametrizing Bridgeland stability conditions on a triangulated category, and the second is a cluster variety with a natural Poisson structure. For quivers of type A, we construct a local biholomorphism from the space of stability conditions to the cluster variety. The existence of this map follows from results of Sibuya in the classical theory of ordinary differential equations. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:260 / 293
页数:34
相关论文
共 24 条
[1]  
Allegretti D. G. L., UNPUB
[2]   MULTIPARAMETER EIGENVALUE PROBLEM IN COMPLEX PLANE [J].
BAKKEN, I .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (05) :1015-1044
[3]  
Bridgeland T., 2016, ARXIV161103697MATAG
[4]   Stability conditions on triangulated categories [J].
Bridgeland, Tom .
ANNALS OF MATHEMATICS, 2007, 166 (02) :317-345
[5]   QUADRATIC DIFFERENTIALS AS STABILITY CONDITIONS [J].
Bridgeland, Tom ;
Smith, Ivan .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2015, (121) :155-278
[6]   Quivers with potentials and their representations I: Mutations [J].
Derksen, Harm ;
Weyman, Jerzy ;
Zelevinsky, Andrei .
SELECTA MATHEMATICA-NEW SERIES, 2008, 14 (01) :59-119
[7]   Moduli spaces of local systems and higher teichmuller theory [J].
Fock, Vladimir ;
Goncharov, Alexander .
PUBLICATIONS MATHEMATIQUES DE L'IHES NO 103, 2006, 103 (1) :1-211
[8]   Cluster algebras and triangulated surfaces. Part I: Cluster complexes [J].
Fomin, Sergey ;
Shapiro, Michael ;
Thurston, Dylan .
ACTA MATHEMATICA, 2008, 201 (01) :83-146
[9]   Wall-crossing, Hitchin systems, and the WKB approximation [J].
Gaiotto, Davide ;
Moore, Gregory W. ;
Neitzke, Andrew .
ADVANCES IN MATHEMATICS, 2013, 234 :239-403
[10]   Four-Dimensional Wall-Crossing via Three-Dimensional Field Theory [J].
Gaiotto, Davide ;
Moore, Gregory W. ;
Neitzke, Andrew .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 299 (01) :163-224