Detection of flat colorectal neoplasia by artificial intelligence: A systematic review

被引:13
作者
Yamada, Masayoshi [1 ,2 ,3 ]
Saito, Yutaka [1 ]
Yamada, Shigemi [3 ,4 ]
Kondo, Hiroko [3 ,4 ]
Hamamoto, Ryuji [3 ,4 ]
机构
[1] Natl Canc Ctr, Endoscopy Div, Tokyo, Japan
[2] Natl Canc Ctr Exploratory Oncol Res & Clin Trial, Div Sci & Technol Endoscopy, Tokyo, Japan
[3] Natl Canc Ctr, Div Med AI Res & Dev, Tokyo, Japan
[4] RIKEN, Adv Intelligence Project Ctr, Tokyo, Japan
关键词
Endoscopy; Artificial interagency; Deep learning; Endoscopic submucosal dissection; Colorectal cancer; COMPUTER-AIDED DETECTION; DEEP-LEARNING ALGORITHM; GASTRIC-CANCER; COLONOSCOPY; PREVENTION; VALIDATION; DIAGNOSIS; ADENOMAS; RISK;
D O I
10.1016/j.bpg.2021.101745
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Objectives: This study review focuses on a deep learning method for the detection of colorectal lesions in colonoscopy and AI support for detecting colorectal neoplasia, especially in flat lesions. Data sources: We performed a systematic electric search with PubMed by using "colonoscopy", "artificial intelligence", and "detection". Finally, nine articles about development and validation study and eight clinical trials met the review criteria. Results: Development and validation studies showed that trained AI models had high accuracydapproximately 90% or more for detecting lesions. Performance was better in elevated lesions than in superficial lesions in the two studies. Among the eight clinical trials, all but one trial showed a significantly high adenoma detection rate in the CADe group than in the control group. Interestingly, the CADe group detected significantly high flat lesions than the control group in the seven studies. Conclusion: Flat colorectal neoplasia can be detected by endoscopists who use AI. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 39 条
[1]   A fully-automated deep learning pipeline for cervical cancer classification [J].
Alyafeai, Zaid ;
Ghouti, Lahouari .
EXPERT SYSTEMS WITH APPLICATIONS, 2020, 141
[2]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[3]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[4]   Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study [J].
Gong, Dexin ;
Wu, Lianlian ;
Zhang, Jun ;
Mu, Ganggang ;
Shen, Lei ;
Liu, Jun ;
Wang, Zhengqiang ;
Zhou, Wei ;
An, Ping ;
Huang, Xu ;
Jiang, Xiaoda ;
Li, Yanxia ;
Wan, Xinyue ;
Hu, Shan ;
Chen, Yiyun ;
Hu, Xiao ;
Xu, Youming ;
Zhu, Xiaoyun ;
Li, Suqin ;
Yao, Liwen ;
He, Xinqi ;
Chen, Di ;
Huang, Li ;
Wei, Xiao ;
Wang, Xuemei ;
Yu, Honggang .
LANCET GASTROENTEROLOGY & HEPATOLOGY, 2020, 5 (04) :352-361
[5]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410
[6]   Application of Artificial Intelligence Technology in Oncology: Towards the Establishment of Precision Medicine [J].
Hamamoto, Ryuji ;
Suvarna, Kruthi ;
Yamada, Masayoshi ;
Kobayashi, Kazuma ;
Shinkai, Norio ;
Miyake, Mototaka ;
Takahashi, Masamichi ;
Jinnai, Shunichi ;
Shimoyama, Ryo ;
Sakai, Akira ;
Takasawa, Ken ;
Bolatkan, Amina ;
Shozu, Kanto ;
Dozen, Ai ;
Machino, Hidenori ;
Takahashi, Satoshi ;
Asada, Ken ;
Komatsu, Masaaki ;
Sese, Jun ;
Kaneko, Syuzo .
CANCERS, 2020, 12 (12) :1-32
[7]   Mortality reduction from gastric cancer by endoscopic and radiographic screening [J].
Hamashima, Chisato ;
Shabana, Michiko ;
Okada, Katsuo ;
Okamoto, Mikizo ;
Osaki, Yoneatsu .
CANCER SCIENCE, 2015, 106 (12) :1744-1749
[8]   New artificial intelligence system: first validation study versus experienced endoscopists for colorectal polyp detection [J].
Hassan, Cesare ;
Wallace, Michael B. ;
Sharma, Pratee ;
Maselli, Rooerta ;
Craviotto, Vincenzo ;
Spadaccini, Marco ;
Repici, Alessandro .
GUT, 2020, 69 (05) :799-800
[9]   A fast learning algorithm for deep belief nets [J].
Hinton, Geoffrey E. ;
Osindero, Simon ;
Teh, Yee-Whye .
NEURAL COMPUTATION, 2006, 18 (07) :1527-1554
[10]   The Development of a Skin Cancer Classification System for Pigmented Skin Lesions Using Deep Learning [J].
Jinnai, Shunichi ;
Yamazaki, Naoya ;
Hirano, Yuichiro ;
Sugawara, Yohei ;
Ohe, Yuichiro ;
Hamamoto, Ryuji .
BIOMOLECULES, 2020, 10 (08) :1-13