Dynamics for the stochastic nonlocal Kuramoto-Sivashinsky equation

被引:18
作者
Yang, Desheng [1 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Peoples R China
关键词
nonlocal term; Hilbert transform; random attractor; Hausdorff dimension;
D O I
10.1016/j.jmaa.2006.07.091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Dynamics for the stochastic Kuramoto-Sivashinsky equation with a nonlocal term is studied. We prove that the stochastic equation has a finite-dimensional random attractor. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:550 / 570
页数:21
相关论文
共 21 条
[1]  
[Anonymous], 1988, APPL MATH SCI
[2]  
Arnold L, 1998, RANDOM DYNAMICAL SYS
[3]  
CAPINSKI M, 1995, NONSTANDARD METHODS
[4]   Upper semicontinuity of attractors for small random perturbations of dynamical systems [J].
Caraballo, T ;
Langa, JA ;
Robinson, JC .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1998, 23 (9-10) :1557-1581
[5]   A GLOBAL ATTRACTING SET FOR THE KURAMOTO-SIVASHINSKY EQUATION [J].
COLLET, P ;
ECKMANN, JP ;
EPSTEIN, H ;
STUBBE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (01) :203-214
[6]   Random point attractors versus random set attractors [J].
Crauel, H .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 63 :413-427
[7]   ATTRACTORS FOR RANDOM DYNAMICAL-SYSTEMS [J].
CRAUEL, H ;
FLANDOLI, F .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (03) :365-393
[8]  
Crauel H., 1999, Ann. Mat. Pura Appl, V176, P57, DOI [DOI 10.1007/BF02505989, 10.1007/BF02505989]
[9]  
Da Prato G, 1996, ERGODICITY INFINITE
[10]   Stochastic Cahn-Hilliard equation [J].
DaPrato, G ;
Debussche, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (02) :241-263