Shape and Biomechanical Characteristics of Human Red Blood Cells in Health and Disease

被引:403
作者
Diez-Silva, Monica [1 ]
Dao, Ming [2 ]
Han, Jongyoon [3 ]
Lim, Chwee-Teck [4 ]
Suresh, Subra
机构
[1] MIT, Res Grp Prof Subra Suresh, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, Suresh Res Grp, Cambridge, MA 02139 USA
[3] Sandia Natl Labs, Livermore, CA USA
[4] Natl Univ Singapore, Div Bioengn, Singapore 117576, Singapore
关键词
PLASMODIUM-FALCIPARUM; HEREDITARY SPHEROCYTOSIS; INFECTED ERYTHROCYTES; PARASITE PROTEINS; MALARIA; ADHESION; DEFORMABILITY; RECEPTOR; CD36; THROMBOSPONDIN;
D O I
10.1557/mrs2010.571
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The biconcave shape and corresponding deformability of the human red blood cell (RBC) is an essential feature of its biological function. This feature of RBCs can be critically affected by genetic or acquired pathological conditions. In this review, we highlight new dynamic in vitro assays that explore various hereditary blood disorders and parasitic infectious diseases that cause disruption of RBC morphology and mechanics. In particular, recent advances in high-throughput microfluidic devices make it possible to sort/identify healthy and pathological human RBCs with different mechanobiological characteristics.
引用
收藏
页码:382 / 388
页数:7
相关论文
共 50 条
  • [31] Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease
    Li, Xuejin
    Vlahovska, Petia M.
    Karniadakis, George Em
    SOFT MATTER, 2013, 9 (01) : 28 - 37
  • [32] Start-up shape dynamics of red blood cells in microcapillary flow
    Tomaiuolo, Giovanna
    Guido, Stefano
    MICROVASCULAR RESEARCH, 2011, 82 (01) : 35 - 41
  • [33] Dual shape recovery of red blood cells flowing out of a microfluidic constriction
    Amirouche, A.
    Esteves, J.
    Lavoignat, A.
    Picot, S.
    Ferrigno, R.
    Faivre, M.
    BIOMICROFLUIDICS, 2020, 14 (02)
  • [34] THE IN-VITRO DISTRIBUTION OF HALOFANTRINE IN HUMAN BLOOD AND PLASMODIUM FALCIPARPUM-PARASITIZED RED-BLOOD-CELLS
    CENNI, B
    BETSCHART, B
    CHEMOTHERAPY, 1995, 41 (03) : 153 - 158
  • [35] Inborn defects in the antioxidant systems of human red blood cells
    van Zwieten, Rob
    Verhoeven, Arthur J.
    Roos, Dirk
    FREE RADICAL BIOLOGY AND MEDICINE, 2014, 67 : 377 - 386
  • [36] Computational Biomechanics of Human Red Blood Cells in Hematological Disorders
    Li, Xuejin
    Li, He
    Chang, Hung-Yu
    Lykotrafitis, George
    Karniadakis, George Em
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2017, 139 (02):
  • [37] Adhesion of human red blood cells and surface charge of the membrane
    Nishiguchi, E
    Okubo, K
    Nakamura, S
    CELL STRUCTURE AND FUNCTION, 1998, 23 (03) : 143 - 152
  • [38] High-throughput single-cell assay for precise measurement of the intrinsic mechanical properties and shape characteristics of red blood cells
    Wei, Qiaodong
    Xiong, Ying
    Ma, Yuhang
    Liu, Deyun
    Lu, Yunshu
    Zhang, Shenghong
    Wang, Xiaolong
    Huang, Huaxiong
    Liu, Yingbin
    Dao, Ming
    Gong, Xiaobo
    LAB ON A CHIP, 2024, 24 (02) : 305 - 316
  • [39] Detection of Plasmodium falciparum-infected red blood cells by optical stretching
    Mauritz, Jakob M. A.
    Tiffert, Teresa
    Seear, Rachel
    Lautenschlaeger, Franziska
    Esposito, Alessandro
    Lew, Virgilio L.
    Guck, Jochen
    Kaminski, Clemens F.
    JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (03)
  • [40] Recent insights into alteration of red blood cells by Babesia bovis: moovin' forward
    Gohil, Sejal
    Kats, Lev M.
    Sturm, Angelika
    Cooke, Brian M.
    TRENDS IN PARASITOLOGY, 2010, 26 (12) : 591 - 599