Published data on the kinetic isotope effects of the hydroxylation of deuterium-substituted methane molecules(CHD3, CH2D2, and CH3D) by methane monooxygenase are examined in the framework of the two-step nonradical mechanism through the intermediate formation of a complex containing pentacoordinate carbon. The kinetic schemes with the first step involving one, two, and three hydrogen atoms of the oxidized substrate are considered. Contrary to the widely accepted oxygen rebound mechanism, the experimental results obtained for the oxidation of various substrates by methane monooxygenase and cytochrome P450 can be explained from the viewpoint of the dynamics of a general nonradical mechanism.