Solving nonconvex SDP problems of structural optimization with stability control

被引:31
作者
Kocvara, M
Stingl, M
机构
[1] Acad Sci Czech Republ, Inst Informat Theory & Automat, CR-18208 Prague 4, Czech Republic
[2] Univ Erlangen Nurnberg, Inst Appl Math, D-91058 Erlangen, Germany
关键词
structural optimization; buckling; stability control; nonconvex semidefinite programming;
D O I
10.1080/10556780410001682844
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The goal of this article is to formulate and solve structural optimization problems with constraints on the global stability of the structure. The stability constraint is based on the linear buckling phenomenon. We formulate the problem as a nonconvex semidefinite programming problem and introduce an algorithm based on the augmented Lagrangian method combined with the trust-region technique. The algorithm is implemented in a code PENNON. The article is concluded by a series of numerical examples.
引用
收藏
页码:595 / 609
页数:15
相关论文
共 28 条
[1]  
Ben-Tal A., 2001, MPS SIAM SERIES OPTI
[2]   Optimal Design of Trusses Under a Nonconvex Global Buckling Constraint [J].
Ben-Tal, Aharon ;
Jarre, Florian ;
Kocvara, Michal ;
Nemirovski, Arkadi ;
Zowe, Jochem .
OPTIMIZATION AND ENGINEERING, 2000, 1 (02) :189-213
[3]  
Bendsoe M, 2002, TOPOLOGY OPTIMIZATIO
[4]  
BENSON SJ, 2002, ANLMCSTM248
[5]  
BENTAL A, 1997, SIAM J OPTIMIZ, V9, P813
[6]  
BIRKER T, 1994, NEW DEV STRUCTURA 18, V199
[7]   CSDP, a C library for semidefinite programming [J].
Borchers, B .
OPTIMIZATION METHODS & SOFTWARE, 1999, 11-2 (1-4) :613-623
[8]  
BREITFELD M, 1994, GLOBALLY CONVERGENT
[9]   Stiffness design of geometrically nonlinear structures using topology optimization [J].
Buhl, T ;
Pedersen, CBW ;
Sigmund, O .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2000, 19 (02) :93-104
[10]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems