A geometric stabilization of planar switched systems

被引:0
作者
Chenavier, Cyrille [1 ]
Ushirobira, Rosane [1 ]
Valmorbida, Giorgio [2 ]
机构
[1] Univ Lille, Inria, CNRS, UMR 9189 CRIStAL, F-59000 Lille, France
[2] Univ Paris Saclay, INRIA, CNRS, Cent Supelec,UMR 8506 L2S, F-91192 Gif Sur Yvette, France
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Linear systems; switching functions; stabilization; algebraic approaches; geometric approaches; LYAPUNOV FUNCTIONS; STABILITY ANALYSIS; OBSERVABILITY; CONTROLLABILITY; STABILIZABILITY; REACHABILITY; CRITERIA;
D O I
10.1016/j.ifacol.2020.12.1787
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate a particular class of switching functions between two linear systems in the plan. The considered functions are defined in terms of geometric constructions. More precisely, we introduce two criteria for proving uniform stability of such functions, both criteria are based on the construction of a Lyapunov function. The first criterion is constructed in terms of an algebraic reformulation of the problem and linear matrix inequalities. The second one is purely geometric. Finally, we illustrate these methods with a numerical example. Copyright (C) 2020 The Authors.
引用
收藏
页码:6446 / 6451
页数:6
相关论文
共 30 条
  • [1] Non-monotonic Lyapunov Functions for Stability of Discrete Time Nonlinear and Switched Systems
    Ahmadi, Amir Ali
    Parrilo, Pablo A.
    [J]. 47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 614 - 621
  • [2] Stability analysis for a class of switched nonlinear systems
    Aleksandrov, A. Yu.
    Chen, Y.
    Platonov, A. V.
    Zhang, L.
    [J]. AUTOMATICA, 2011, 47 (10) : 2286 - 2291
  • [3] Athanasopoulos N., 2014, IFAC P, P6007
  • [4] A note on stability conditions for planar switched systems
    Balde, Moussa
    Boscain, Ugo
    Mason, Paolo
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2009, 82 (10) : 1882 - 1888
  • [5] Control of systems integrating logic, dynamics, and constraints
    Bemporad, A
    Morari, M
    [J]. AUTOMATICA, 1999, 35 (03) : 407 - 427
  • [6] Observability and controllability of piecewise affine and hybrid systems
    Bemporad, A
    Ferrari-Trecate, G
    Morari, M
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (10) : 1864 - 1876
  • [7] NONQUADRATIC LYAPUNOV FUNCTIONS FOR ROBUST-CONTROL
    BLANCHINI, F
    [J]. AUTOMATICA, 1995, 31 (03) : 451 - 461
  • [8] Bliman P.-A., 2003, Proceedings of IFAC Conference on the Analysis and Design of Hybrid Systems, P325
  • [9] Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach
    Daafouz, J
    Riedinger, P
    Iung, C
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (11) : 1883 - 1887
  • [10] Perspectives and results on the stability and stabilizability of hybrid systems
    DeCarlo, RA
    Branicky, MS
    Pettersson, S
    Lennartson, B
    [J]. PROCEEDINGS OF THE IEEE, 2000, 88 (07) : 1069 - 1082