Wach Modules, Regulator Maps, and e-Isomorphisms in Families

被引:2
作者
Bellovin, Rebecca [1 ]
Venjakob, Otmar [2 ]
机构
[1] Imperial Coll London, 180 Queens Gate, London SW7 2AZ, England
[2] Heidelberg Univ, Math Inst, Neuenheimer Feld 288, D-69120 Heidelberg, Germany
基金
美国国家科学基金会;
关键词
IWASAWA THEORY; PHI;
D O I
10.1093/imrn/rnx276
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the "local epsilon-isomorphism" conjecture of Fukaya and Kato [13] for certain crystalline families of G(Qp)-representations. This conjecture can be regarded as a local analog of the Iwasawa main conjecture for families. Our work extends earlier work of Kato for rank-1 modules (cf. [33]), of Benois and Berger for crystalline G(Qp)-representations with respect to the cyclotomic extension (cf. [1]), as well as of Loeffler et al. (cf. [21]) for crystalline G(Qp)-representations with respect to abelian p-adic Lie extensions of Q(p). Nakamura [24, 25] has also formulated a version of Kato's epsilon-conjecture for affinoid families of (phi, Gamma)-modules over the Robba ring, and proved his conjecture in the rank-1 case. He used this case to construct an epsilon-isomorphism for families of trianguline (phi, Gamma)-modules, depending on a fixed triangulation. Our results imply that this epsilon-isomorphism is independent of the chosen triangulation for certain crystalline families. The main ingredient of our proof consists of the construction of families of Wach modules generalizing work of Wach and Berger [6] and following Kisin's approach to the construction of potentially semi-stable deformation rings [18].
引用
收藏
页码:5127 / 5204
页数:78
相关论文
共 35 条
[1]  
[Anonymous], 2002, SPRINGER MONOGRAPHS
[2]   p-adic Hodge theory in rigid analytic families [J].
Bellovin, Rebecca .
ALGEBRA & NUMBER THEORY, 2015, 9 (02) :371-433
[3]  
Benois D, 2008, COMMENT MATH HELV, V83, P603
[4]   Limits of crystalline representations [J].
Berger, L .
COMPOSITIO MATHEMATICA, 2004, 140 (06) :1473-1498
[5]  
Berger L, 2002, INVENT MATH, V148, P219, DOI 10.1007/s002220100202
[6]  
Berger L, 2010, ASTERISQUE, P155
[7]  
Berger L, 2008, ASTERISQUE, P303
[8]  
Cartier P., 1990, Progr. Math., V87, P249
[9]  
Cherbonnier F, 1998, INVENT MATH, V133, P581, DOI 10.1007/s002220050255
[10]   AUTOMORPHY FOR SOME l-ADIC LIFTS OF AUTOMORPHIC MOD l GALOIS REPRESENTATIONS [J].
Clozel, Laurent ;
Harris, Michael ;
Taylor, Richard .
PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 108, 2008, 108 (108) :1-181