The impact of astrophysical dust grains on the confinement of cosmic rays

被引:24
作者
Squire, Jonathan [1 ]
Hopkins, Philip F. [2 ]
Quataert, Eliot [3 ,4 ,5 ]
Kempski, Philipp [3 ,4 ]
机构
[1] Univ Otago, Phys Dept, Dunedin 9010, New Zealand
[2] CALTECH, TAPIR, Mailcode 350-17, Pasadena, CA 91125 USA
[3] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA
[5] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
instabilities; plasmas; cosmic rays; galaxies: evolution; WAVE-PARTICLE INTERACTIONS; STREAMING INSTABILITY; MAGELLANIC-CLOUD; ALFVEN-WAVES; PROPAGATION; TURBULENCE; TRANSPORT; EMISSION; GALAXIES; SATURATION;
D O I
10.1093/mnras/stab179
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We argue that charged dust grains could significantly impact the confinement and transport of galactic cosmic rays. For sub-GeV to similar to 10(3) GeV cosmic rays, small-scale parallel Alfven waves, which isotropize cosmic rays through gyro-resonant interactions, are also gyro-resonant with charged grains. If the dust is nearly stationary, as in the bulk of the interstellar medium, Alfv ' en waves are damped by dust. This will reduce the amplitude of Alfv ' en waves produced by the cosmic rays through the streaming instability, thus enhancing cosmic ray transport. In well-ionized regions, the dust damping rate is larger by a factor of similar to 10 than other mechanisms that damp parallel Alfv ' en waves at the scales relevant for similar to GeV cosmic rays, suggesting that dust could play a key role in regulating cosmic ray transport. In astrophysical situations in which the dust moves through the gas with super-Alfvenic velocities, Alfven waves are rendered unstable, which could directly scatter cosmic rays. This interaction has the potential to create a strong feedback mechanism where dust, driven through the gas by radiation pressure, then strongly enhances the confinement of cosmic rays, increasing their capacity to drive outflows. This mechanism may act in the circumgalactic medium around star-forming galaxies and active galactic nuclei.
引用
收藏
页码:2630 / 2644
页数:15
相关论文
共 89 条
[1]   PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra [J].
Adriani, O. ;
Barbarino, G. C. ;
Bazilevskaya, G. A. ;
Bellotti, R. ;
Boezio, M. ;
Bogomolov, E. A. ;
Bonechi, L. ;
Bongi, M. ;
Bonvicini, V. ;
Borisov, S. ;
Bottai, S. ;
Bruno, A. ;
Cafagna, F. ;
Campana, D. ;
Carbone, R. ;
Carlson, P. ;
Casolino, M. ;
Castellini, G. ;
Consiglio, L. ;
De Pascale, M. P. ;
De Santis, C. ;
De Simone, N. ;
Di Felice, V. ;
Galper, A. M. ;
Gillard, W. ;
Grishantseva, L. ;
Jerse, G. ;
Karelin, A. V. ;
Koldashov, S. V. ;
Krutkov, S. Y. ;
Kvashnin, A. N. ;
Leonov, A. ;
Malakhov, V. ;
Malvezzi, V. ;
Marcelli, L. ;
Mayorov, A. G. ;
Menn, W. ;
Mikhailov, V. V. ;
Mocchiutti, E. ;
Monaco, A. ;
Mori, N. ;
Nikonov, N. ;
Osteria, G. ;
Palma, F. ;
Papini, P. ;
Pearce, M. ;
Picozza, P. ;
Pizzolotto, C. ;
Ricci, M. ;
Ricciarini, S. B. .
SCIENCE, 2011, 332 (6025) :69-72
[2]   Observation of New Properties of Secondary Cosmic Rays Lithium, Beryllium, and Boron by the Alpha Magnetic Spectrometer on the International Space Station [J].
Aguilar, M. ;
Cavasonza, L. Ali ;
Ambrosi, G. ;
Arruda, L. ;
Attig, N. ;
Aupetit, S. ;
Azzarello, P. ;
Bachlechner, A. ;
Barao, F. ;
Barrau, A. ;
Barrin, L. ;
Bartoloni, A. ;
Basara, L. ;
Basegmez-du Pree, S. ;
Battarbee, M. ;
Battiston, R. ;
Becker, U. ;
Behlmann, M. ;
Beischer, B. ;
Berdugo, J. ;
Bertucci, B. ;
Bindel, K. F. ;
Bindi, V. ;
de Boer, W. ;
Bollweg, K. ;
Bonnivard, V. ;
Borgia, B. ;
Boschini, M. J. ;
Bourquin, M. ;
Bueno, E. F. ;
Burger, J. ;
Burger, W. J. ;
Cadoux, F. ;
Cai, X. D. ;
Capell, M. ;
Caroff, S. ;
Casaus, J. ;
Castellini, G. ;
Cervelli, F. ;
Chae, M. J. ;
Chang, Y. H. ;
Chen, A. I. ;
Chen, G. M. ;
Chen, H. S. ;
Cheng, L. ;
Chou, H. Y. ;
Choumilov, E. ;
Choutko, V. ;
Chung, C. H. ;
Clark, C. .
PHYSICAL REVIEW LETTERS, 2018, 120 (02)
[3]   DISCREPANT HARDENING OBSERVED IN COSMIC-RAY ELEMENTAL SPECTRA [J].
Ahn, H. S. ;
Allison, P. ;
Bagliesi, M. G. ;
Beatty, J. J. ;
Bigongiari, G. ;
Childers, J. T. ;
Conklin, N. B. ;
Coutu, S. ;
DuVernois, M. A. ;
Ganel, O. ;
Han, J. H. ;
Jeon, J. A. ;
Kim, K. C. ;
Lee, M. H. ;
Lutz, L. ;
Maestro, P. ;
Malinin, A. ;
Marrocchesi, P. S. ;
Minnick, S. ;
Mognet, S. I. ;
Nam, J. ;
Nam, S. ;
Nutter, S. L. ;
Park, I. H. ;
Park, N. H. ;
Seo, E. S. ;
Sina, R. ;
Wu, J. ;
Yang, J. ;
Yoon, Y. S. ;
Zei, R. ;
Zinn, S. Y. .
ASTROPHYSICAL JOURNAL LETTERS, 2010, 714 (01) :L89-L93
[4]   Cosmic ray transport in the Galaxy: A review [J].
Amato, Elena ;
Blasi, Pasquale .
ADVANCES IN SPACE RESEARCH, 2018, 62 (10) :2731-2749
[5]   The origin of galactic cosmic rays [J].
Amato, Elena .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2014, 23 (07)
[6]   Magnetohydrodynamic Particle-in-cell Simulations of the Cosmic-Ray Streaming Instability: Linear Growth and Quasi-linear Evolution [J].
Bai, Xue-Ning ;
Ostriker, Eve C. ;
Plotnikov, Illya ;
Stone, James M. .
ASTROPHYSICAL JOURNAL, 2019, 876 (01)
[7]   Cosmic ray acceleration [J].
Bell, A. R. .
ASTROPARTICLE PHYSICS, 2013, 43 :56-70
[9]   The Self-Control of Cosmic Rays [J].
Blasi, Pasquale .
GALAXIES, 2019, 7 (02)
[10]   The Role of Cosmic-ray Transport in Shaping the Simulated Circumgalactic Medium [J].
Butsky, Iryna S. ;
Quinn, Thomas R. .
ASTROPHYSICAL JOURNAL, 2018, 868 (02)