Jenkins-Strebel differentials

被引:3
作者
Arbarello, Enrico [1 ]
Cornalba, Maurizio [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat Guido Castelnuovo, I-00185 Rome, Italy
[2] Univ Pavia, Dipartimento Matemat Felice Casorati, I-27100 Pavia, Italy
关键词
Quadratic differentials; closed trajectories; Teichmuller space; MODULI SPACE; CURVES;
D O I
10.4171/RLM/564
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this mostly expository paper we revisit a fundamental result of Strebel, asserting the existence and uniqueness, on Riemann surfaces of finite type, of Jenkins-Strebel differentials having double poles with prescribed "residues'' at prescribed points. In particular, we give a self-contained and somewhat shortened proof of Strebel's result.
引用
收藏
页码:115 / 157
页数:43
相关论文
共 18 条
[1]  
ARBARELLOM E, GRUNDLEHREN MATH WIS, P268
[2]   DENSITY OF STREBEL DIFFERENTIALS [J].
DOUADY, A ;
HUBBARD, J .
INVENTIONES MATHEMATICAE, 1975, 30 (02) :175-179
[3]  
HAIN R, 1997, P S PURE MATH 2, V62
[4]   THE EULER CHARACTERISTIC OF THE MODULI SPACE OF CURVES [J].
HARER, J ;
ZAGIER, D .
INVENTIONES MATHEMATICAE, 1986, 85 (03) :457-485
[5]  
HARER J, 1985, LECT NOTES MATH, V1337, P138
[8]  
JENKINS JA, 1976, LECT NOTES PURE APPL, V36, P65
[9]   INTERSECTION THEORY ON THE MODULI SPACE OF CURVES AND THE MATRIX AIRY FUNCTION [J].
KONTSEVICH, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) :1-23
[10]  
LOOIJENGA, 1993, ASTERISQUE, V216, P187