Molecular Programming of Drought-Challenged Trichoderma harzianum-Bioprimed Rice (Oryza sativa L.)

被引:24
|
作者
Bashyal, Bishnu Maya [1 ]
Parmar, Pooja [1 ]
Zaidi, Najam Waris [2 ]
Aggarwal, Rashmi [1 ]
机构
[1] ICAR Indian Agr Res Inst, Div Plant Pathol, New Delhi, India
[2] Int Rice Res Inst, New Delhi, India
关键词
Trichoderma harzianum; drought; rice; transcriptome (RNA-seq); DEGs; ARABIDOPSIS-THALIANA; ANTIOXIDANT DEFENSE; PROMOTES GROWTH; PHOTOSYSTEM-I; STRESS; PLANTS; PROTEIN; GENES; FAMILY; EXPRESSION;
D O I
10.3389/fmicb.2021.655165
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Trichoderma biopriming enhances rice growth in drought-stressed soils by triggering various plant metabolic pathways related to antioxidative defense, secondary metabolites, and hormonal upregulation. In the present study, transcriptomic analysis of rice cultivar IR64 bioprimed with Trichoderma harzianum under drought stress was carried out in comparison with drought-stressed samples using next-generation sequencing techniques. Out of the 2,506 significant (p < 0.05) differentially expressed genes (DEGs), 337 (15%) were exclusively expressed in drought-stressed plants, 382 (15%) were expressed in T. harzianum-treated drought-stressed plants, and 1,787 (70%) were commonly expressed. Furthermore, comparative analysis of upregulated and downregulated genes under stressed conditions showed that 1,053 genes (42%) were upregulated and 733 genes (29%) were downregulated in T. harzianum-treated drought-stressed rice plants. The genes exclusively expressed in T. harzianum-treated drought-stressed plants were mostly photosynthetic and antioxidative such as plastocyanin, small chain of Rubisco, PSI subunit Q, PSII subunit PSBY, osmoproteins, proline-rich protein, aquaporins, stress-enhanced proteins, and chaperonins. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis states that the most enriched pathways were metabolic (38%) followed by pathways involved in the synthesis of secondary metabolites (25%), carbon metabolism (6%), phenyl propanoid (7%), and glutathione metabolism (3%). Some of the genes were selected for validation using real-time PCR which showed consistent expression as RNA-Seq data. Furthermore, to establish host-T. harzianum interaction, transcriptome analysis of Trichoderma was also carried out. The Gene Ontology (GO) analysis of T. harzianum transcriptome suggested that the annotated genes are functionally related to carbohydrate binding module, glycoside hydrolase, GMC oxidoreductase, and trehalase and were mainly upregulated, playing an important role in establishing the mycelia colonization of rice roots and its growth. Overall, it can be concluded that T. harzianum biopriming delays drought stress in rice cultivars by a multitude of molecular programming.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] microRNA-marker based genetic diversity analysis for drought tolerance in rice (Oryza sativa L.)
    Samanta, Pratyasha
    Dey, Narottam
    PLANT PHYSIOLOGY REPORTS, 2023, 28 (01) : 43 - 52
  • [22] Genome-wide identification and characterization of cystatin family genes in rice (Oryza sativa L.)
    Wang, Wei
    Zhao, Peng
    Zhou, Xue-mei
    Xiong, Han-xian
    Sun, Meng-xiang
    PLANT CELL REPORTS, 2015, 34 (09) : 1579 - 1592
  • [23] Role of phosphate in drought stress regulation in developing rice (Oryza sativa L.) seedlings
    Barbhuiya, Imran Hussian
    Moulick, Debojyoti
    Hossian, Akbar
    Choudhury, Shuvasish
    CEREAL RESEARCH COMMUNICATIONS, 2024, 52 (02) : 531 - 544
  • [24] Chitosan Potentially Induces Drought Resistance in Rice Oryza sativa L. via Calmodulin
    Seang-Ngam, Sukhumaporn
    Limruengroj, Kampon
    Pichyangkura, Rath
    Chadchawan, Supachitra
    Buaboocha, Teerapong
    JOURNAL OF CHITIN AND CHITOSAN SCIENCE, 2014, 2 (02) : 117 - 122
  • [25] GENETIC DIVERSITY AMONG INDONESIAN RICE (Oryza Sativa L.) GENOTYPES FOR DROUGHT TOLERANCE
    Widyawan, M. H.
    Hanifa, I
    Alam, T.
    Supriyanta
    Basunanda, P.
    Wulandari, R. A.
    SABRAO JOURNAL OF BREEDING AND GENETICS, 2020, 52 (03): : 202 - 215
  • [26] Screening of diverse germplasms for genetic studies of drought tolerance in rice (Oryza sativa L.)
    Ashfaq, Muhammad
    Haider, Muhammad Saleem
    Ali, Amna
    Ali, Muhammad
    Hanif, Sana
    Mubashar, Urooj
    CARYOLOGIA, 2014, 67 (04) : 296 - 304
  • [27] Improving the Drought Tolerance in Rice (Oryza sativa L.) by Exogenous Application of Salicylic Acid
    Farooq, M.
    Basra, S. M. A.
    Wahid, A.
    Ahmad, N.
    Saleem, B. A.
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2009, 195 (04) : 237 - 246
  • [28] High throughput phenomics in elucidating drought stress responses in rice (Oryza sativa L.)
    S. Anand
    R. L. Visakh
    R. Nalishma
    R. P. Sah
    R. Beena
    Journal of Plant Biochemistry and Biotechnology, 2025, 34 (1) : 119 - 132
  • [29] ABA-dependent suberization and aquaporin activity in rice (Oryza sativa L.) root under different water potentials
    Kim, Ga-Eun
    Sung, Jwakyung
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [30] PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES OF RICE (ORYZA SATIVA L.) VARIETIES AGAINST DROUGHT STRESS
    Kuru, I. B. R. A. H. I. M. SELcUK
    Isikalan, Cigdem
    AkbaS, Filiz
    BANGLADESH JOURNAL OF BOTANY, 2021, 50 (02): : 335 - 342