Deformations and dilations of chaotic billiards: Dissipation rate, and quasiorthogonality of the boundary wave functions

被引:26
作者
Barnett, A [1 ]
Cohen, D [1 ]
Heller, EJ [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
关键词
Boundary wave functions - Chaotic billiards - Dilations - Eigenstates - Generic deformation - Matrix elements - Quasiorthogonality;
D O I
10.1103/PhysRevLett.85.1412
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider chaotic billiards in d dimensions, and study the matrix elements M-nm corresponding to general deformations of the boundary. We analyze the dependence of \Mnm\(2) on omega = (E-n - E-m)/h using semiclassical considerations. This relates to an estimate of the energy dissipation rate when the deformation is periodic at frequency w. We show that, for dilations and translations of the boundary, \M-nm\(2) vanishes like omega(4) as omega --> 0, for rotations such as omega(2), whereas for generic deformations it goes to a constant. Such special cases lead to quasiorthogonality of the eigenstates on the boundary.
引用
收藏
页码:1412 / 1415
页数:4
相关论文
共 16 条
[1]   DIABOLICAL POINTS IN THE SPECTRA OF TRIANGLES [J].
BERRY, MV ;
WILKINSON, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1984, 392 (1802) :15-43
[3]   ONE-BODY DISSIPATION AND SUPER-VISCIDITY OF NUCLEI [J].
BLOCKI, J ;
BONEH, Y ;
NIX, JR ;
RANDRUP, J ;
ROBEL, M ;
SIERK, AJ ;
SWIATECKI, WJ .
ANNALS OF PHYSICS, 1978, 113 (02) :330-386
[4]   SEMICLASSICAL ACCURACY FOR BILLIARDS [J].
BOASMAN, PA .
NONLINEARITY, 1994, 7 (02) :485-537
[5]   Quantum dissipation due to the interaction with chaotic degrees of freedom and the correspondence principle [J].
Cohen, D .
PHYSICAL REVIEW LETTERS, 1999, 82 (25) :4951-4955
[6]  
COHEN D, IN PRESS ANN PHYS NY
[7]  
COHEN D, 2000, P INT SCH PHYS ENR F
[8]   2-PARAMETER SCALING IN THE WIGNER ENSEMBLE [J].
FEINGOLD, M ;
GIOLETTA, A ;
IZRAILEV, FM ;
MOLINARI, L .
PHYSICAL REVIEW LETTERS, 1993, 70 (19) :2936-2939
[9]   SPECTRAL STATISTICS IN SEMICLASSICAL RANDOM-MATRIX ENSEMBLES [J].
FEINGOLD, M ;
LEITNER, DM ;
WILKINSON, M .
PHYSICAL REVIEW LETTERS, 1991, 66 (08) :986-989
[10]   DISTRIBUTION OF MATRIX-ELEMENTS OF CHAOTIC SYSTEMS [J].
FEINGOLD, M ;
PERES, A .
PHYSICAL REVIEW A, 1986, 34 (01) :591-595