Hybrid teaching-learning artificial neural network for city-level electrical load prediction

被引:2
作者
Li, Kangji [1 ]
Xie, Xianming [1 ]
Xue, Wenping [1 ]
Chen, Xu [1 ]
机构
[1] Jiangsu Univ, Sch Elect & Informat Engn, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
D O I
10.1007/s11432-018-9594-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页数:3
相关论文
共 5 条
[1]   Parameters identification of solar cell models using generalized oppositional teaching learning based optimization [J].
Chen, Xu ;
Yu, Kunjie ;
Du, Wenli ;
Zhao, Wenxiang ;
Liu, Guohai .
ENERGY, 2016, 99 :170-180
[2]   Building's electricity consumption prediction using optimized artificial neural networks and principal component analysis [J].
Li, Kangji ;
Hu, Chenglei ;
Liu, Guohai ;
Xue, Wenping .
ENERGY AND BUILDINGS, 2015, 108 :106-113
[3]   A novel approach framework based on statistics for reconstruction and heartrate estimation from PPG with heavy motion artifacts [J].
Pang, Bo ;
Liu, Ming ;
Zhang, Xu ;
Li, Peng ;
Chen, Hongda .
SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (02)
[4]   Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems [J].
Rao, R. V. ;
Savsani, V. J. ;
Vakharia, D. P. .
COMPUTER-AIDED DESIGN, 2011, 43 (03) :303-315
[5]   A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models [J].
Wang, Zeyu ;
Srinivasan, Ravi S. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 75 :796-808