Bioenabled Platform to Access Polyamides with Built-In Target Properties

被引:14
作者
Carter, Prerana [1 ]
Trettin, James L. [1 ,2 ]
Lee, Ting-Han [1 ]
Chalgren, Nickolas L. [1 ]
Forrester, Michael J. [1 ]
Shanks, Brent H. [1 ,2 ]
Tessonnier, Jean-Philippe [1 ,2 ]
Cochran, Eric W. [1 ]
机构
[1] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA
[2] Ctr Biorenewable Chem CBiRC, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
ADIPIC ACID PRODUCTION; MUCONIC ACID; ISOMERIZATION; CONVERSION;
D O I
10.1021/jacs.2c01397
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The diversification of platform chemicals is key to today's petroleum industry. Likewise, the flourishing of tomorrow's biorefineries will rely on molecules with next-generation properties from biomass. Herein, we explore this opportunity with a novel approach to monomers with custom property enhancements. Cyclic diacids with alkyl and aromatic decorations were synthesized from muconic acid by Diels-Alder cycloaddition, and copolymerized with hexamethylenediamine and adipic acid to yield polyamides with built-in hydrophobicity and flame retardancy. Testing shows a 70% reduction in water uptake and doubling of char production while largely retaining other key properties of the parent Nylon-6,6. The present approach can be generalized to access a wide range of performance-advantaged polyamides.
引用
收藏
页码:9548 / 9553
页数:6
相关论文
共 39 条
[21]   Production of Diethyl Terephthalate from Biomass-Derived Muconic Acid [J].
Lu, Rui ;
Lu, Fang ;
Chen, Jiazhi ;
Yu, Weiqiang ;
Huang, Qianqian ;
Zhang, Junjie ;
Xu, Jie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (01) :249-253
[22]   Electrochemical Conversion of Muconic Acid to Biobased Diacid Monomers [J].
Matthiesen, John E. ;
Carraher, Jack M. ;
Vasiliu, Monica ;
Dixon, David A. ;
Tessonnier, Jean-Philippe .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (06) :3575-3585
[23]   Biorenewable blends of polyamide-4,10 and polyamide-6,10 [J].
Moran, Christopher S. ;
Barthelon, Agathe ;
Pearsall, Andrew ;
Mittal, Vikas ;
Dorgan, John R. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (45)
[24]  
Muller C., 2015, Patent, Patent No. [2015086819A1, 2015086819]
[25]  
Palmer RJ, 2005, KIRK OTHMER ENCY CHE, DOI [10.1002/0471238961.1612011916011213.a01.pub2, DOI 10.1002/0471238961.1612011916011213.A01.PUB2]
[26]  
Rorrer NA, 2017, GREEN CHEM, V19, P2812, DOI [10.1039/c7gc00320j, 10.1039/C7GC00320J]
[27]   Heterogeneous Diels-Alder catalysis for biomass-derived aromatic compounds [J].
Settle, Amy E. ;
Berstis, Laura ;
Rorrer, Nicholas A. ;
Roman-Leshkov, Yuriy ;
Beckham, Gregg T. ;
Richards, Ryan M. ;
Vardon, Derek R. .
GREEN CHEMISTRY, 2017, 19 (15) :3468-3492
[28]   A Robust Strategy for Sustainable Organic Chemicals Utilizing Bioprivileged Molecules [J].
Shanks, Brent H. ;
Broadbelt, Linda J. .
CHEMSUSCHEM, 2019, 12 (13) :2970-2975
[29]   Bioprivileged molecules: creating value from biomass [J].
Shanks, Brent H. ;
Keeling, Peter L. .
GREEN CHEMISTRY, 2017, 19 (14) :3177-3185
[30]   STEP-GROWTH POLYMERIZATION [J].
STILLE, JK .
JOURNAL OF CHEMICAL EDUCATION, 1981, 58 (11) :862-866