Histogram-PMHT for fluctuating target models

被引:10
作者
Gaetjens, Han X. [1 ,2 ]
Davey, Samuel J. [1 ,2 ]
Arulampalam, Sanjeev [1 ,2 ]
Fletcher, Fiona K. [1 ]
Lim, Cheng-Chew [2 ]
机构
[1] Def Sci & Technol Grp, Edinburgh, SA, Australia
[2] Univ Adelaide, Sch Elect & Elect Engn, Adelaide, SA, Australia
关键词
TRACK-BEFORE-DETECT; MAXIMUM-LIKELIHOOD; TRUNCATED DATA;
D O I
10.1049/iet-rsn.2016.0618
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The histogram-probabilistic multi-hypothesis tracker (H-PMHT) is an efficient multi-target tracking approach to the track-before-detect problem. A fundamental feature of the H-PMHT is the discretisation of the energy in the sensor data and the assumption of a multinomial measurement model on the resulting image. A problem with the H-PMHT is that the multinomial measurement model fails to account for fluctuations in the target amplitude, which can degrade performance in realistic sensing conditions. The authors propose an alternative measurement model based on a Poisson mixture process to allow for fluctuating target amplitudes. Simulations show that this new approach, referred to as the Poisson H-PMHT, gives more accurate signal-to-noise ratio estimates than the standard H-PMHT, particularly for scenarios featuring targets with fluctuating amplitude.
引用
收藏
页码:1292 / 1301
页数:10
相关论文
共 25 条
  • [1] Ainsleigh P. L., 2009, 11807 NUWC
  • [2] [Anonymous], 1968, An introduction to probability theory and its applications
  • [3] Davey S., 2012, INTEGRATED TRACKING, P311
  • [4] Davey S. J., 2011, P 14 INT C INF FUS C
  • [5] Davey S. J., 2011, J ADV INFORM FUSION, V6, P167
  • [6] Probabilistic Multihypothesis Tracker With an Evolving Poisson Prior
    Davey, Sam
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2015, 51 (01) : 747 - 759
  • [7] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [8] On the interpretation of x(2) from contingency tables, and the calculation of P
    Fisher, RA
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY, 1922, 85 : 87 - 94
  • [9] Gentle J. E., 2003, RANDOM NUMBER GENERA
  • [10] Granstrom K., 2012, 2012 15th International Conference on Information Fusion (FUSION 2012), P2170