A Novel Temporal Convolutional Network for NLOS Identification of UWB Signal

被引:2
作者
Li, Peiqin [1 ]
Tan, Yifan [2 ]
Yan, Yuhao [1 ]
Wang, Haowen [1 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci & Technol, Changsha, Peoples R China
[2] Natl Univ Def Technol, Coll Basic Mil & Polit Educ, Changsha, Peoples R China
来源
2022 9TH INTERNATIONAL FORUM ON ELECTRICAL ENGINEERING AND AUTOMATION, IFEEA | 2022年
关键词
UWB; Channel Impulse Response; Temporal Convolutional Network; Attention Mechanism; SYSTEM;
D O I
10.1109/IFEEA57288.2022.10037825
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The accurate identification of Non-line of Sight (NLOS) propagation is an important premise to ensure the positioning accuracy in UWB indoor positioning system. In this paper, a network which takes the channel impulse response (CIR) as the input and combines the temporal convolutional network (TCN) and attention mechanism is proposed to identify the NLOS propagation. Experiments on the open source dataset show that the identification accuracy of the network reaches 89.80%, which is better than the existing mainstream long short-term memory neural network. Also, the accuracy and computational amount of the network can be balanced by adjustment of CIR length according to the needs in practical application, indicating that the network has a good application prospect.
引用
收藏
页码:373 / 376
页数:4
相关论文
共 26 条
[1]   Recommendation Based on Large-Scale Many-Objective Optimization for the Intelligent Internet of Things System [J].
Cao, Bin ;
Zhang, Yatian ;
Zhao, Jianwei ;
Liu, Xin ;
Skonieczny, Lukasz ;
Lv, Zhihan .
IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (16) :15030-15038
[2]  
Capraro F, 2020, IEEE LAT AM T, V18, P392, DOI [10.1109/tla.2020.9085295, 10.1109/TLA.2019.9082253]
[3]   Channel-Quality-Evaluation-Based Anchor Node Selection for UWB Indoor Positioning [J].
Chen, Chunxue ;
Huang, Zheng ;
Wang, Jiayu ;
Yuan, Lei ;
Bao, Jun ;
Chen, Zhuming .
ELECTRONICS, 2022, 11 (03)
[4]   UWB System for Indoor Positioning and Tracking With Arbitrary Target Orientation, Optimal Anchor Location, and Adaptive NLOS Mitigation [J].
Chen, Yu-Yao ;
Huang, Shih-Ping ;
Wu, Ting-Wei ;
Tsai, Wei-Ting ;
Liou, Chong-Yi ;
Mao, Shau-Gang .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (09) :9304-9314
[5]   Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks [J].
Cwalina, Krzysztof K. ;
Rajchowski, Piotr ;
Blaszkiewicz, Olga ;
Olejniczak, Alicja ;
Sadowski, Jaroslaw .
SENSORS, 2019, 19 (19)
[6]   Genetic algorithm assisted DS-UWB BPSK MMSE receiver [J].
Doshi, Twinkle V. ;
Dalal, Upena .
OPTIK, 2016, 127 (03) :1486-1490
[7]   New Approach for Indoor Positioning With Wi-Fi Using Quadratic Antenna Arrays [J].
El-Hennawey, Samy ;
El-Gendy, Mohamed S. .
IEEE COMMUNICATIONS LETTERS, 2021, 25 (03) :845-849
[8]  
Ewine-Project, EWINE PROJECT UWB LO
[9]   An Enhanced ZigBee Indoor Positioning System With an Ensemble Approach [J].
Fang, Shih-Hau ;
Wang, Chu-Hsuan ;
Huang, Ting-Yu ;
Yang, Chin-Huang ;
Chen, Yung-Sheng .
IEEE COMMUNICATIONS LETTERS, 2012, 16 (04) :564-567
[10]   LOCATE-US: Indoor Positioning for Mobile Devices Using Encoded Ultrasonic Signals, Inertial Sensors and Graph-Matching [J].
Gualda, David ;
Perez-Rubio, Maria Carmen ;
Urena, Jesus ;
Perez-Bachiller, Sergio ;
Villadangos, Jose Manuel ;
Hernandez, Alvaro ;
Garcia, Juan Jesus ;
Jimenez, Ana .
SENSORS, 2021, 21 (06) :1-25