THE BROWNIAN MAP: A UNIVERSAL LIMIT FOR RANDOM PLANAR MAPS

被引:0
|
作者
Le Gall, J. -F. [1 ]
机构
[1] Univ Paris 11, Dept Math, F-91405 Orsay, France
来源
XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS | 2014年
关键词
Planar map; graph distance; geodesic; scaling limit; continuum random tree; Brownian map; SCALING LIMITS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present recent work about the scaling limit of random planar maps, which are random graphs embedded in the two-dimensional sphere. We consider a random planar map M-n which is uniformly distributed over the class of all rooted q-angulations with n faces. We let m(n) be the vertex set of M-n, which is equipped with the graph distance d(gr). Both when q >= 4 is an even integer and when q = 3, there exists a positive constant c(q) such that the rescaled metric spaces (m(n); c(q)n(-1/4) d(gr)) converge in distribution in the Gromov-Hausdorff sense, towards a universal limit called the Brownian map. The particular case of triangulations solves a question of Schramm.
引用
收藏
页码:420 / 428
页数:9
相关论文
共 50 条
  • [1] Geodesics in large planar maps and in the Brownian map
    Le Gall, Jean-Francois
    ACTA MATHEMATICA, 2010, 205 (02) : 287 - 360
  • [2] Rescaled bipartite planar maps converge to the Brownian map
    Abraham, Celine
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (02): : 575 - 595
  • [3] The Brownian map is the scaling limit of uniform random plane quadrangulations
    Miermont, Gregory
    ACTA MATHEMATICA, 2013, 210 (02) : 319 - 401
  • [4] ON THE SCALING LIMIT OF RANDOM PLANAR MAPS WITH LARGE FACES
    Le Gall, Jean-Francois
    Miermont, Gregory
    XVITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2010, : 470 - 474
  • [5] Random Walks on Mated-CRT Planar Maps and Liouville Brownian Motion
    Nathanaël Berestycki
    Ewain Gwynne
    Communications in Mathematical Physics, 2022, 395 : 773 - 857
  • [6] Random Walks on Mated-CRT Planar Maps and Liouville Brownian Motion
    Berestycki, Nathanael
    Gwynne, Ewain
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 395 (02) : 773 - 857
  • [7] Universal aspects of critical percolation on random half-planar maps
    Richier, Loic
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 45
  • [8] Limit of normalized quadrangulations: The Brownian map
    Marckert, Jean-Francois
    Mokkadem, Abdelkader
    ANNALS OF PROBABILITY, 2006, 34 (06): : 2144 - 2202
  • [9] Random Cubic Planar Maps
    Drmota, Michael
    Noy, Marc
    Requile, Clement
    Rue, Juanjo
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (02):
  • [10] Recurrence of Random Planar Maps
    Nachmias, Asaf
    PLANAR MAPS, RANDOM WALKS AND CIRCLE PACKING: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLVIII - 2018, 2020, 2243 : 73 - 87