Rate of convergence for proximal point algorithms on Hadamard manifolds

被引:11
作者
Tang, Guo-ji [1 ]
Huang, Nan-jing [2 ]
机构
[1] Guangxi Univ Nationalities, Sch Sci, Nanning 530006, Guangxi, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Inexact proximal point algorithm; Hadamard manifold; Convergence rate; Maximal monotone vector field; MONOTONE VECTOR-FIELDS; VARIATIONAL-INEQUALITIES; EQUILIBRIUM PROBLEMS; BREGMAN DISTANCES; QUASI-CONVEX; CRITERION;
D O I
10.1016/j.orl.2014.06.009
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, an estimate of convergence rate concerned with an inexact proximal point algorithm for the singularity of maximal monotone vector fields on Hadamard manifolds is discussed. We introduce a weaker growth condition, which is an extension of that of Luque from Euclidean spaces to Hadamard manifolds. Under the growth condition, we prove that the inexact proximal point algorithm has linear/superlinear convergence rate. The main results presented in this paper generalize and improve some corresponding known results. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:383 / 387
页数:5
相关论文
共 35 条
[1]   ON THE CONVERGENCE OF INEXACT PROXIMAL POINT ALGORITHM ON HADAMARD MANIFOLDS [J].
Ahmadi, P. ;
Khatibzadeh, H. .
TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (02) :419-433
[2]  
[Anonymous], 1996, RIEMANNIAN GEOMETRY
[3]   Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds [J].
Bento, G. C. ;
Ferreira, O. P. ;
Oliveira, P. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) :564-572
[4]  
Bento G.C., 2012, PROXIMAL POINT METHO
[5]   On a generalized proximal point method for solving equilibrium problems in Banach spaces [J].
Burachik, Regina ;
Kassay, Gabor .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (18) :6456-6464
[6]   A proximal point method for the variational inequality problem in Banach spaces [J].
Burachik, RS ;
Scheimberg, S .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (05) :1633-1649
[7]  
Combettes P.L., 2010, ARXIV 0912 3522V4
[8]   Signal recovery by proximal forward-backward splitting [J].
Combettes, PL ;
Wajs, VR .
MULTISCALE MODELING & SIMULATION, 2005, 4 (04) :1168-1200
[9]  
Da Cruz Neto JX., 2000, Balk. J. Geom. Appl, V5, P69
[10]   A new relative error criterion for the proximal point algorithm [J].
Dong, YD .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (10) :2143-2148