Late time behavior of the maximal slicing of the Schwarzschild black hole

被引:46
作者
Beig, R
Murchadha, NO
机构
[1] Univ Vienna, Inst Theoret Phys, A-1090 Vienna, Austria
[2] Natl Univ Ireland Univ Coll Cork, Dept Phys, Cork, Ireland
关键词
D O I
10.1103/PhysRevD.57.4728
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A time-symmetric Cauchy slice of the extended Schwarzschild spacetime can evolve into a foliation of the r>3m/2 region of spacetime by maximal surfaces with the requirement that time run equally fast at both spatial ends of the manifold. This paper studies the behavior of these slices in the limit as proper time at infinity becomes arbitrarily large. It is shown that the central lapse decays exponentially and an analytic expression is given both for the exponent and for the preexponential factor.
引用
收藏
页码:4728 / 4737
页数:10
相关论文
共 23 条
[1]   ON MAXIMAL SURFACES IN ASYMPTOTICALLY FLAT SPACE-TIMES [J].
BARTNIK, R ;
CHRUSCIEL, PT ;
MURCHADHA, NO .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 130 (01) :95-109
[2]   EXISTENCE OF MAXIMAL SURFACES IN ASYMPTOTICALLY FLAT SPACETIMES [J].
BARTNIK, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (02) :155-175
[3]   TRAPPED SURFACES DUE TO CONCENTRATION OF GRAVITATIONAL-RADIATION [J].
BEIG, R ;
MURCHADHA, NO .
PHYSICAL REVIEW LETTERS, 1991, 66 (19) :2421-2424
[4]   TRAPPED SURFACES IN VACUUM SPACETIMES [J].
BEIG, R ;
MURCHADHA, NO .
CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (02) :419-430
[5]   Vacuum spacetimes with future trapped surfaces [J].
Beig, R ;
Murchadha, NO .
CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (04) :739-751
[6]  
BEIG R, IN PRESS
[7]  
BESSE A, 1987, EINSTEIN MANIFOLDS, pCH3
[8]   ISOLATED MAXIMAL SURFACES IN SPACETIME [J].
BRILL, D ;
FLAHERTY, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (02) :157-165
[9]  
Choquet-Bruhat Y., 1976, ANN SCUOLA NORMA 4 S, V3, P361
[10]  
Chow S.-N., 1986, CASOPIS PEST MAT, V111, P14, DOI DOI 10.21136/CPM.1986.118260