Generalization of von Neumann's spectral sets and integral representation of operators

被引:51
作者
Delyon, B
Delyon, F
机构
[1] INRIA, IRISA, F-35042 Rennes, France
[2] CNRS, UMR C7644, F-75700 Paris, France
[3] Ecole Polytech, Ctr Phys Theor, F-91128 Palaiseau, France
来源
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE | 1999年 / 127卷 / 01期
关键词
numerical range; field of values; spectral sets; spectral measures;
D O I
10.24033/bsmf.2340
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend von Neumann's theory of spectral sets, in order to deal with the numerical range of operators. An integral representation for arbitrary operators is given, allowing to extend functional calculus to non-normal operators. We apply our results to the proof of the Burkholder conjecture: let T be an operator consisting in a finite product of conditional expectation, then for any square integrable function f, the iterates T-n f converge almost surely to some limit.
引用
收藏
页码:25 / 41
页数:17
相关论文
共 9 条
[1]  
[Anonymous], REAL COMPLEX ANAL
[2]  
BRUNEL A, 1996, M ESPERANCES CONDITI
[3]  
Kato T., 1966, Perturbation Theory for Linear Operators., DOI [10.1007/978-3-662-12678-3, DOI 10.1007/978-3-662-12678-3]
[4]  
Krengel U., 1985, ERGODIC THEOREMS
[5]  
Neumann J.V., 1950, MATH NACHR, V4, P258
[6]  
Riesz F., 1968, Lecons D'Analyse Fonctionnelle
[7]  
Stein E., 1970, TOPICS HARMONIC ANAL
[9]   ON PRODUCTS OF CONDITIONAL-EXPECTATION OPERATORS [J].
ZAHAROPOL, R .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1990, 33 (03) :257-260