Caputo generalized ψ-fractional integral inequalities

被引:1
|
作者
Anastassiou, George A. [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
Poincare inequalities; Sobolev inequalities; Hilbert-Pachpatte inequalities; right and left Caputo psi-fractional derivatives; polar coordinates method;
D O I
10.1515/jaa-2020-2037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Very general univariate and multivariate Caputo psi-fractional integral inequalities of Poincare, Sobolev and Hilbert-Pachpatte types are presented. Estimates are with respect to parallel to.parallel to(p), 1 <= p < infinity. Applications are given.
引用
收藏
页码:107 / 120
页数:14
相关论文
共 50 条
  • [1] Generalized Caputo Type Fractional Inequalities
    Anastassiou, George A.
    INTELLIGENT MATHEMATICS II: APPLIED MATHEMATICS AND APPROXIMATION THEORY, 2016, 441 : 423 - 454
  • [2] New Fractional Integral Inequalities Pertaining to Caputo-Fabrizio and Generalized Riemann-Liouville Fractional Integral Operators
    Tariq, Muhammad
    Alsalami, Omar Mutab
    Shaikh, Asif Ali
    Nonlaopon, Kamsing
    Ntouyas, Sotiris K.
    AXIOMS, 2022, 11 (11)
  • [3] RIEMANN LIOUVILLE AND CAPUTO FRACTIONAL DIFFERENTIAL AND INTEGRAL INEQUALITIES
    Stutson, Donna S.
    Vatsala, Aghalaya S.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2014, 23 (04): : 723 - 733
  • [4] Several new integral inequalities via Caputo fractional integral operators
    Ozdemir, M. Emin
    Butt, Saad Ihsan
    Ekinci, Alper
    Nadeem, Mehroz
    FILOMAT, 2023, 37 (06) : 1843 - 1854
  • [5] Fractional Newton-type integral inequalities for the Caputo fractional operator
    Mahajan, Yukti
    Nagar, Harish
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (04) : 5244 - 5254
  • [6] Fractional integral inequalities for generalized convexity
    Kashuri, Artion
    Ali, Muhammad Aamir
    Abbas, Mujahid
    Budak, Hiiseyin
    Sarikaya, Mehmet Zeki
    TBILISI MATHEMATICAL JOURNAL, 2020, 13 (03) : 63 - 83
  • [7] Certain generalized fractional integral inequalities
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    Khan, Aftab
    Tassaddiq, Asifa
    Abouzaid, Moheb Saad
    AIMS MATHEMATICS, 2020, 5 (02): : 1588 - 1602
  • [8] Generalized integral inequalities for fractional calculus
    Samraiz, Muhammad
    Iqbal, Sajid
    Pecaric, Josip
    COGENT MATHEMATICS & STATISTICS, 2018, 5 (01):
  • [9] Some Caputo-Fabrizio fractional integral inequalities with applications
    Qaisar, Shahid
    Munir, Arslan
    Naeem, Muhammad
    Budak, Huseyin
    FILOMAT, 2024, 38 (16) : 5905 - 5923
  • [10] On Some Fractional Integral Inequalities Involving Caputo-Fabrizio Integral Operator
    Chinchane, Vaijanath L.
    Nale, Asha B.
    Panchal, Satish K.
    Chesneau, Christophe
    AXIOMS, 2021, 10 (04)