A delayed Black and Scholes formula

被引:110
作者
Arriojas, Mercedes
Hu, Yaozhong
Mohammed, Salah-Eldin
Pap, Gyula
机构
[1] Cent Univ Venezuela, Fac Ciencias, Caracas, Venezuela
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[3] So Illinois Univ, Dept Math, Carbondale, IL 62901 USA
[4] Univ Debrecen, Inst Math & Informat, Debrecen, Hungary
基金
美国国家科学基金会;
关键词
Black and Scholes formula; equivalent martingale measure; option pricing; stochastic functional differential equation;
D O I
10.1080/07362990601139669
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we develop an explicit formula for pricing European options when the underlying stock price follows nonlinear stochastic functional differential equations with fixed and variable delays. We believe that the proposed models are sufficiently flexible to fit real market data, and yet simple enough to allow for a closed-form representation of the option price. Furthermore, the models maintain the no-arbitrage property and the completeness of the market. The derivation of the option-pricing formula is based on an equivalent local martingale measure.
引用
收藏
页码:471 / 492
页数:22
相关论文
共 30 条
[1]  
BACHELIER L, 1900, ANN ECOLE NORMALE SU, V3
[2]  
Bates DS., 1996, Handb Stat, V14, P567, DOI [10.1016/S0169-7161(96)14022-0, DOI 10.1016/S0169-7161(96)14022-0]
[3]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[4]  
COOTNER P, 1964, RANDOM CHARACTER SHO
[5]  
Hida T., 1980, BROWNIAN MOTION
[6]   Complete models with stochastic volatility [J].
Hobson, DG ;
Rogers, LCG .
MATHEMATICAL FINANCE, 1998, 8 (01) :27-48
[7]  
Hu YZ, 2004, ANN PROBAB, V32, P265
[8]   Ito-Wiener chaos expansion with exact residual and correlation, variance inequalities [J].
Hu, YZ .
JOURNAL OF THEORETICAL PROBABILITY, 1997, 10 (04) :835-848
[9]   Fractional white noise calculus and applications to finance [J].
Hu, YZ ;
Oksendal, B .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2003, 6 (01) :1-32
[10]  
ITO K, 1964, J MATH KYOTO U, V41, P1