A dynamic, ensemble learning approach to forecast dengue fever epidemic years in Brazil using weather and population susceptibility cycles

被引:18
作者
McGough, Sarah F. [1 ,2 ]
Clemente, Leonardo [1 ,3 ]
Kutz, J. Nathan [4 ]
Santillana, Mauricio [1 ,2 ,5 ]
机构
[1] Boston Childrens Hosp, Computat Hlth Informat Program, Boston, MA 02115 USA
[2] Harvard Univ, Harvard TH Chan Sch Publ Hlth, Boston, MA 02115 USA
[3] Tecnol Monterrey, Monterrey 64849, Nuevo Leon, Mexico
[4] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
[5] Harvard Univ, Harvard Med Sch, Dept Pediat, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
dengue; forecasting; ensemble; AEDES-AEGYPTI DIPTERA; RISK; TRANSMISSION; CULICIDAE; THAILAND; CLIMATE; SPREAD; BURDEN;
D O I
10.1098/rsif.2020.1006
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transmission of dengue fever depends on a complex interplay of human, climate and mosquito dynamics, which often change in time and space. It is well known that its disease dynamics are highly influenced by multiple factors including population susceptibility to infection as well as by microclimates: small-area climatic conditions which create environments favourable for the breeding and survival of mosquitoes. Here, we present a novel machine learning dengue forecasting approach, which, dynamically in time and space, identifies local patterns in weather and population susceptibility to make epidemic predictions at the city level in Brazil, months ahead of the occurrence of disease outbreaks. Weather-based predictions are improved when information on population susceptibility is incorporated, indicating that immunity is an important predictor neglected by most dengue forecast models. Given the generalizability of our methodology to any location or input data, it may prove valuable for public health decision-making aimed at mitigating the effects of seasonal dengue outbreaks in locations globally.
引用
收藏
页数:10
相关论文
共 44 条
  • [1] Spatial Heterogeneity, Host Movement and Mosquito-Borne Disease Transmission
    Acevedo, Miguel A.
    Prosper, Olivia
    Lopiano, Kenneth
    Ruktanonchai, Nick
    Caughlin, T. Trevor
    Martcheva, Maia
    Osenberg, Craig W.
    Smith, David L.
    [J]. PLOS ONE, 2015, 10 (06):
  • [2] Cross-protective immunity can account for the alternating epidemic pattern of dengue virus serotypes circulating in Bangkok
    Adams, B.
    Holmes, E. C.
    Zhang, C.
    Mammen, M. P., Jr.
    Nimmannitya, S.
    Kalayanarooj, S.
    Boots, M.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (38) : 14234 - 14239
  • [3] Growing water insecurity and dengue burden in the Americas
    Akanda, Ali S.
    Johnson, Kristin
    [J]. LANCET PLANETARY HEALTH, 2018, 2 (05) : E190 - E191
  • [4] Temperature and Dengue Virus Infection in Mosquitoes: Independent Effects on the Immature and Adult Stages
    Alto, Barry W.
    Bettinardi, David
    [J]. AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2013, 88 (03) : 497 - 505
  • [5] Evaluation of the Dengue Epidemiological Surveillance System data quality, positive predictive value, timeliness and representativeness, Brazil, 2005-2009
    Barbosa, Jakeline Ribeiro
    dos Santos Barrado, Jean Carlos
    de Sene Amancio Zara, Ana Laura
    Siqueira Junior, Joao Bosco
    [J]. EPIDEMIOLOGIA E SERVICOS DE SAUDE, 2015, 24 (01): : 49 - 58
  • [6] Using Mobile Phone Data to Predict the Spatial Spread of Cholera
    Bengtsson, Linus
    Gaudart, Jean
    Lu, Xin
    Moore, Sandra
    Wetter, Erik
    Sallah, Kankoe
    Rebaudet, Stanislas
    Piarroux, Renaud
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [7] The global distribution and burden of dengue
    Bhatt, Samir
    Gething, Peter W.
    Brady, Oliver J.
    Messina, Jane P.
    Farlow, Andrew W.
    Moyes, Catherine L.
    Drake, John M.
    Brownstein, John S.
    Hoen, Anne G.
    Sankoh, Osman
    Myers, Monica F.
    George, Dylan B.
    Jaenisch, Thomas
    Wint, G. R. William
    Simmons, Cameron P.
    Scott, Thomas W.
    Farrar, Jeremy J.
    Hay, Simon I.
    [J]. NATURE, 2013, 496 (7446) : 504 - 507
  • [8] Ensemble method for dengue prediction
    Buczak, Anna L.
    Baugher, Benjamin
    Moniz, Linda J.
    Bagley, Thomas
    Babin, Steven M.
    Guven, Erhan
    [J]. PLOS ONE, 2018, 13 (01):
  • [9] Hatching Response of Aedes aegypti (Diptera: Culicidae) Eggs at Low Temperatures: Effects of Hatching Media and Storage Conditions
    Byttebier, B.
    De Majo, M. S.
    Fischer, S.
    [J]. JOURNAL OF MEDICAL ENTOMOLOGY, 2014, 51 (01) : 97 - 103
  • [10] Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan
    Chuang, Ting-Wu
    Chaves, Luis Fernando
    Chen, Po-Jiang
    [J]. PLOS ONE, 2017, 12 (06):