Benchmarking substrate-based kinase activity inference using phosphoproteomic data

被引:56
作者
Hernandez-Armenta, Claudia [1 ]
Ochoa, David [1 ]
Goncalves, Emanuel [1 ]
Saez-Rodriguez, Julio [1 ,2 ]
Beltrao, Pedro [1 ]
机构
[1] European Bioinformat Inst, European Mol Biol Lab, Hinxton, England
[2] Rhein Westfal TH Aachen, Fac Med, Joint Res Ctr Computat Biomed JRC COMBINE, Wendlingweg 2, D-52074 Aachen, Germany
关键词
ACUTE MYELOID-LEUKEMIA; ENRICHMENT ANALYSIS; IN-VIVO; REVEALS; ACTIVATION; NETWORKS; INHIBITION; ATLAS; MUTATIONS;
D O I
10.1093/bioinformatics/btx082
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Phosphoproteomic experiments are increasingly used to study the changes in signaling occurring across different conditions. It has been proposed that changes in phosphorylation of kinase target sites can be used to infer when a kinase activity is under regulation. However, these approaches have not yet been benchmarked due to a lack of appropriate benchmarking strategies. Results: We used curated phosphoproteomic experiments and a gold standard dataset containing a total of 184 kinase-condition pairs where regulation is expected to occur to benchmark and compare different kinase activity inference strategies: Z-test, Kolmogorov Smirnov test, Wilcoxon rank sum test, gene set enrichment analysis (GSEA), and a multiple linear regression model. We also tested weighted variants of the Z-test and GSEA that include information on kinase sequence specificity as proxy for affinity. Finally, we tested how the number of known substrates and the type of evidence (in vivo, in vitro or in silico) supporting these influence the predictions. Conclusions: Most models performed well with the Z-test and the GSEA performing best as determined by the area under the ROC curve (Mean AUC = 0.722). Weighting kinase targets by the kinase target sequence preference improves the results marginally. However, the number of known substrates and the evidence supporting the interactions has a strong effect on the predictions.
引用
收藏
页码:1845 / 1851
页数:7
相关论文
共 52 条
[1]   Reduced-representation Phosphosignatures Measured by Quantitative Targeted MS Capture Cellular States and Enable Large-scale Comparison of Drug-induced Phenotypes [J].
Abelin, Jennifer G. ;
Patel, Jinal ;
Lu, Xiaodong ;
Feeney, Caitlin M. ;
Fagbami, Lola ;
Creech, Amanda L. ;
Hu, Roger ;
Lam, Daniel ;
Davison, Desiree ;
Pino, Lindsay ;
Qiao, Jana W. ;
Kuhn, Eric ;
Officer, Adam ;
Li, Jianxue ;
Abbatiello, Susan ;
Subramanian, Aravind ;
Sidman, Richard ;
Snyder, Evan ;
Carr, Steven A. ;
Jaffe, Jacob D. .
MOLECULAR & CELLULAR PROTEOMICS, 2016, 15 (05) :1622-1641
[2]   Time-resolved characterization of cAMP/PKA-dependent signaling reveals that platelet inhibition is a concerted process involving multiple signaling pathways [J].
Beck, Florian ;
Geiger, Joerg ;
Gambaryan, Stepan ;
Veit, Johannes ;
Vaudel, Marc ;
Nollau, Peter ;
Kohlbacher, Oliver ;
Martens, Lennart ;
Walter, Ulrich ;
Sickmann, Albert ;
Zahedi, Rene P. .
BLOOD, 2014, 123 (05) :E1-E10
[3]   Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response [J].
Beli, Petra ;
Lukashchuk, Natalia ;
Wagner, Sebastian A. ;
Weinert, Brian T. ;
Olsen, Jesper V. ;
Baskcomb, Linda ;
Mann, Matthias ;
Jackson, Stephen P. ;
Choudhary, Chunaram .
MOLECULAR CELL, 2012, 46 (02) :212-225
[4]   Kinase-Substrate Enrichment Analysis Provides Insights into the Heterogeneity of Signaling Pathway Activation in Leukemia Cells [J].
Casado, Pedro ;
Rodriguez-Prados, Juan-Carlos ;
Cosulich, Sabina C. ;
Guichard, Sylvie ;
Vanhaesebroeck, Bart ;
Joel, Simon ;
Cutillas, Pedro R. .
SCIENCE SIGNALING, 2013, 6 (268) :rs6
[5]   Decoding signalling networks by mass spectrometry-based proteomics [J].
Choudhary, Chunaram ;
Mann, Matthias .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2010, 11 (06) :427-439
[6]   A quantitative atlas of mitotic phosphorylation [J].
Dephoure, Noah ;
Zhou, Chunshui ;
Villen, Judit ;
Beausoleil, Sean A. ;
Bakalarski, Corey E. ;
Elledge, Stephen J. ;
Gygi, Steven P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (31) :10762-10767
[7]   Phospho.ELM: a database of phosphorylation sites-update 2011 [J].
Dinkel, Holger ;
Chica, Claudia ;
Via, Allegra ;
Gould, Cathryn M. ;
Jensen, Lars J. ;
Gibson, Toby J. ;
Diella, Francesca .
NUCLEIC ACIDS RESEARCH, 2011, 39 :D261-D267
[8]   Phosphoproteome Integration Reveals Patient-Specific Networks in Prostate Cancer [J].
Drake, Justin M. ;
Paull, Evan O. ;
Graham, Nicholas A. ;
Lee, John K. ;
Smith, Bryan A. ;
Titz, Bjoern ;
Stoyanova, Tanya ;
Faltermeier, Claire M. ;
Uzunangelov, Vladislav ;
Carlin, Daniel E. ;
Fleming, Daniel Teo ;
Wong, Christopher K. ;
Newton, Yulia ;
Sudha, Sud ;
Vashisht, Ajay A. ;
Huang, Jiaoti ;
Wohlschlegel, James A. ;
Graeber, Thomas G. ;
Witte, Owen N. ;
Stuart, Joshua M. .
CELL, 2016, 166 (04) :1041-1054
[9]   Oncogene-specific activation of tyrosine kinase networks during prostate cancer progression [J].
Drake, Justin M. ;
Graham, Nicholas A. ;
Stoyanova, Tanya ;
Sedghi, Amir ;
Goldstein, Andrew S. ;
Cai, Houjian ;
Smith, Daniel A. ;
Zhang, Hong ;
Komisopoulou, Evangelia ;
Huang, Jiaoti ;
Graeber, Thomas G. ;
Witte, Owen N. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (05) :1643-1648
[10]   Multidimensional Strategy for Sensitive Phosphoproteonnics Incorporating Protein Prefractionation Combined with SIMAC, HILIC, and TiO2 Chromatography Applied to Proximal EGF Signaling [J].
Engholm-Keller, Kasper ;
Hansen, Thomas Aarup ;
Palmisano, Giuseppe ;
Larsen, Martin R. .
JOURNAL OF PROTEOME RESEARCH, 2011, 10 (12) :5383-5397