Direct methanol fuel cell based on poly(vinyl alcohol)/titanium oxide nanotubes/poly(styrene sulfonic acid) (PVA/nt-TiO2/PSSA) composite polymer membrane

被引:86
作者
Yang, Chun-Chen [1 ]
Chien, Wen-Chen [1 ]
Li, Yingjeng James [1 ]
机构
[1] Ming Chi Univ Technol, Dept Chem Engn, Taishan 243, Taipei Hsien, Taiwan
关键词
Poly(vinyl alcohol); Nanotube-titanium oxide (nt-TiO2); Poly(styrene sulfonic acid) (PSSA); Proton-conducting composite membrane; Direct methanol fuel cell (DMFC); PROTON-CONDUCTING MEMBRANES; ALCOHOL) MEMBRANES; DMFC APPLICATIONS; HIGH SELECTIVITY; PERFORMANCE; ELECTROLYTE; IMPEDANCE; ANODE;
D O I
10.1016/j.jpowsour.2009.12.024
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The high performance poly(vinyl alcohol)/titanium oxide nanotubes/poly(styrene sulfonic acid) (PVA/ntTiO(2)/PSSA) proton-conducting composite membrane is prepared by a solution casting method. The characteristic properties of these blend composite membranes are investigated by thermal gravimetric analysis (TGA), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), micro-Raman spectroscopy, dynamic mechanical analysis (I)MA), methanol permeability measurement and AC impedance method. It is found that the peak power densities of the DMFC with 1, 2, and 4 M CH3OH fuels are 12.85, 23.72, and 10.99 mW cm(-2), respectively, at room temperature and ambient air. Especially, among three methanol concentrations, the 2 M methanol shows the highest peak power density among three methanol concentrations. The results indicate that the air-breathing direct methanol fuel cell comprised of a novel PVA/nt-TiO2/PSSA composite polymer membrane has excellent electrochemical performance and stands out as a viable candidate for applications in DMFC. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3407 / 3415
页数:9
相关论文
共 35 条
[1]   Formation of carbon-supported PtM alloys for low temperature fuel cells: a review [J].
Antolini, E .
MATERIALS CHEMISTRY AND PHYSICS, 2003, 78 (03) :563-573
[2]   Nafion-TiO2 composite DMFC membranes:: physico-chemical properties of the filler versus electrochemical performance [J].
Baglio, V ;
Aricò, AS ;
Di Blasi, A ;
Antonucci, V ;
Antonucci, PL ;
Licoccia, S ;
Traversa, E ;
Fiory, FS .
ELECTROCHIMICA ACTA, 2005, 50 (05) :1241-1246
[3]   Mordenite-incorporated PVA-PSSA membranes as electrolytes for DMFCs [J].
Bhat, S. D. ;
Sahu, A. K. ;
George, C. ;
Pitchumani, S. ;
Sridhar, P. ;
Chandrakumar, N. ;
Singh, K. K. ;
Krishna, N. ;
Shukla, A. K. .
JOURNAL OF MEMBRANE SCIENCE, 2009, 340 (1-2) :73-83
[4]   Proton conducting membranes based on PEG/SiO2 nanocomposites for direct methanol fuel cells [J].
Chang, HY ;
Lin, CW .
JOURNAL OF MEMBRANE SCIENCE, 2003, 218 (1-2) :295-306
[5]   A polyaniline supported PtRu nanocomposite anode and a Pd-impregnated nanocomposite Nafion membrane for DMFCs [J].
Choi, JH ;
Kini, YM ;
Lee, JS ;
Cho, KY ;
Jung, HY ;
Park, JK ;
Park, IS ;
Sung, YE .
SOLID STATE IONICS, 2005, 176 (39-40) :3031-3034
[6]   Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications - a comparative study [J].
Deivaraj, TC ;
Lee, JY .
JOURNAL OF POWER SOURCES, 2005, 142 (1-2) :43-49
[7]   Impedance of vapor feed direct methanol fuel cells-polarization dependence of elementary processes at the anode [J].
Fukunaga, H ;
Ishida, T ;
Teranishi, N ;
Arai, C ;
Yamada, K .
ELECTROCHIMICA ACTA, 2004, 49 (13) :2123-2129
[8]   Structural control and impedance analysis of cathode for direct methanol fuel cell [J].
Furukawa, K ;
Okajima, K ;
Sudoh, M .
JOURNAL OF POWER SOURCES, 2005, 139 (1-2) :9-14
[9]   Platinum catalysed nanoporous titanium dioxide electrodes in H2SO4 solutions [J].
Hayden, BE ;
Malevich, DV ;
Pletcher, D .
ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (08) :395-399
[10]   Proton-conducting membranes with high selectivity from cross-linked poly(vinyl alcohol) and poly(vinyl pyrrolidone) for direct methanol fuel cell applications [J].
Huang, Y. F. ;
Chuang, L. C. ;
Kannan, A. M. ;
Lin, C. W. .
JOURNAL OF POWER SOURCES, 2009, 186 (01) :22-28