Search Process Analysis of Multiobjective Evolutionary Algorithms using Convergence-Diversity Diagram

被引:0
作者
Kinoshita, Takato [1 ]
Masuyama, Naoki [2 ]
Nojima, Yusuke [2 ]
机构
[1] Osaka Prefecture Univ, Guraduate Sch Engn, Sakai, Osaka, Japan
[2] Osaka Metropolitan Univ, Grad Sch Informat, Sakai, Osaka, Japan
来源
2022 JOINT 12TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS AND 23RD INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (SCIS&ISIS) | 2022年
基金
日本学术振兴会;
关键词
multi-objective optimization; multi-objective evolutionary algorithm; search process analysis; convergence; diversity;
D O I
10.1109/SCISISIS55246.2022.10001961
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many tasks in the real world are multi-objective optimization problems (MOPs). Population-based approaches are promising for solving MOPs. In particular, multi-objective evolutionary algorithms (MOEAs) are popular and have been actively studied over the last two decades. However, since it is not easy to directly display and compare multi-dimensional solution sets, it is difficult to analyze the search process of MOEAs using direct visualization techniques such as scatter plots. This paper proposes an analytical method to compare multiple search processes in terms of convergence and diversity by extending the authors' previous work, i.e., Convergence-Diversity Diagram. Through computational experiments, the proposed method reveals characteristics and similarities in three representative MOEAs and six test problems. In addition, this paper provides discussions on algorithm design, biases in the DTLZ test suite, and the improvement of visualization based on experimental results.
引用
收藏
页数:6
相关论文
共 50 条
[21]   Evolutionary Dynamic Multiobjective Optimization via Learning From Historical Search Process [J].
Zhao, Qi ;
Yan, Bai ;
Shi, Yuhui ;
Middendorf, Martin .
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (07) :6119-6130
[22]   HCS: A New Local Search Strategy for Memetic Multiobjective Evolutionary Algorithms [J].
Lara, Adriana ;
Sanchez, Gustavo ;
Coello Coello, Carlos A. ;
Schuetze, Oliver .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (01) :112-132
[23]   Evolutionary Algorithms with Segment-Based Search for Multiobjective Optimization Problems [J].
Li, Miqing ;
Yang, Shengxiang ;
Li, Ke ;
Liu, Xiaohui .
IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (08) :1295-1313
[24]   Multiobjective placement of electronic components using evolutionary algorithms [J].
Deb, K ;
Jain, P ;
Gupta, NK ;
Maji, HK .
IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2004, 27 (03) :480-492
[25]   Convergence and Diversity Analysis of Indicator-based Multi-Objective Evolutionary Algorithms [J].
Guillermo Falcon-Cardona, Jesus ;
Coello, Carlos A. Coello .
PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, :524-531
[26]   Using multiobjective evolutionary algorithms to assess biological simulation models [J].
Komuro, Rie ;
Reynolds, Joel H. ;
Ford, E. David .
EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2007, 4403 :560-+
[27]   Environmental/Economic power dispatch using multiobjective evolutionary algorithms [J].
Abido, MA .
2003 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-4, CONFERENCE PROCEEDINGS, 2003, :441-441
[28]   Determining Optimal Crop Rotations by Using Multiobjective Evolutionary Algorithms [J].
Pavon, Ruth ;
Brunelli, Ricardo ;
von Luecken, Christian .
KNOWLEDGE-BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT I, PROCEEDINGS, 2009, 5711 :147-154
[29]   Environmental/economic power dispatch using multiobjective evolutionary algorithms [J].
Abido, MA .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2003, 18 (04) :1529-1537
[30]   MULTIOBJECTIVE TUNING OF ROBUST GPC CONTROLLERS USING EVOLUTIONARY ALGORITHMS [J].
Herrero, J. M. ;
Blasco, X. ;
Martinez, M. ;
Sanchis, J. .
IJCCI 2009: PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE, 2009, :263-268