Partial decomposition approach to generate load curve forecasting scenarios

被引:6
作者
Carmo, D. L. [1 ]
Souza, R. C. [1 ]
Barbosa, C. R. H. [2 ]
机构
[1] Pontifical Catholic Univ Rio de Janeiro, Ind Engn Dept, Rio De Janeiro, RJ, Brazil
[2] Pontifical Catholic Univ Rio de Janeiro, Postgrad Program Metrol, Rio De Janeiro, RJ, Brazil
关键词
Load curve forecasting; Load demand; Hourly data; Bottom-up approach; Partial decomposition approach;
D O I
10.1016/j.ijepes.2019.105436
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Detailed information about hourly load has always been considered essential when the subject is meeting the energy demand. Thus, in order to propose a support tool to the Brazilian energy market, this work presents a Scenarios Generation Framework. Such procedure uses bottom-up approach as an annual demand projection provider. The Specific Profile Generation Method is used as a way to overcome the lack of hourly data in Brazil. Not only that, Partial Decomposition Approach, a well-known methodology is used to adapt annual load demand into hourly load curves, closing all existing gaps of other methodologies. Finalizing the Scenarios Generation Framework, Monte Carlo simulation is applied over different obtained results and confidence intervals indicate the possible values of load behavior in the future, thus turning a deterministic forecasting method into a scenarios generation framework. In order to check the results, the Framework is applied and validated using the southeast Brazilian region, developing consistent scenarios which were able to keep relevant historical behavior, at the same time it inset projected behavior changes on the demand.
引用
收藏
页数:11
相关论文
共 31 条
[1]  
Agancia Nacional de Energia Eletrica-ANEEL, 2010, PROC DISTR EN EL SIS
[2]   Long-term forecasting of hourly electricity load: Identification of consumption profiles and segmentation of customers [J].
Andersen, F. M. ;
Larsen, H. V. ;
Boomsma, T. K. .
ENERGY CONVERSION AND MANAGEMENT, 2013, 68 :244-252
[3]  
[Anonymous], 2008, EUROSTAT METHOLOGIES
[4]  
Bansal S, 2018, INT CONF SPEECH DATA, P1, DOI 10.1109/ICSDA.2018.8693013
[5]   Modeling the impact of energy efficiency in the electricity consumption of the Brazilian tertiary sector [J].
Bastos, Bruno Q. ;
Souza, Reinaldo C. ;
Calili, Rodrigo F. ;
Cyrino Oliveira, Fernando L. ;
Catenazzi, Giacomo ;
Jakob, Martin .
2017 14TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET (EEM 17), 2017,
[6]  
Bossmann T, 2013, INT C EUR ENERGY MAR, V10, P1, DOI [10.1109/EEM.2013.6607361, DOI 10.1109/EEM.2013.6607361]
[7]  
Carpinteiro OAS, 2006, LECT NOTES COMPUT SC, V4132, P717
[8]  
Empresa de Pesquisa Energetica (EPE)/Ministerio das Minas e Energia (MME), 2015, AN EST EN EL 2015 AN, DOI [10.1017/CB09781107415324.004, DOI 10.1017/CB09781107415324.004]
[9]   A novel modeling approach for hourly forecasting of long-term electric energy demand [J].
Filik, Ummuhan Basaran ;
Gerek, Omer Nezih ;
Kurban, Mehmet .
ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (01) :199-211
[10]   Short-term forecasting of the Abu Dhabi electricity load using multiple weather variables [J].
Friedrich, Luiz ;
Afshari, Afshin .
CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 :3014-3026