Estimates of confinement time and energy gain for plasma liner driven magnetoinertial fusion using an analytic self-similar converging shock model

被引:31
作者
Cassibry, J. T. [1 ]
Cortez, R. J. [1 ]
Hsu, S. C. [2 ]
Witherspoon, F. D. [3 ]
机构
[1] Univ Alabama, Prop Res Ctr, Huntsville, AL 35899 USA
[2] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA
[3] HyperV Technol Corp, Chantilly, VA 20151 USA
关键词
MAGNETIZED TARGET FUSION;
D O I
10.1063/1.3257920
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Plasma liner driven magnetoinertial fusion (PLMIF) is it fusion energy concept that utilizes an imploding plasma liner to shock heat and compress a magnetized target plasma to fusion conditions. The fusion burn fraction is linearly proportional to the confinement (or "dwell") time of the liner-target system at peak compression, and therefore it is important to estimate the dwell time accurately in order to assess the fusion energy yield and gain. In this work, the dwell time has been estimated Using the exact solution to it self-similar converging shock model. The dwell time was found to be determined by the SUM Of the Outgoing shock and rarefaction times through the plasma liner at peak compression, and for chosen PLMIF conditions the dwell time was on the order of 1 mu s. In addition. we show that the engineering gain, i.e., the total energy extracted as electricity (from fusion plus expanded liner energy) divided by the electrical energy required to implode the liner, exceeds unity for a wide range of liner thicknesses and specific heat ratios (C) 2009 American Institute of Physics. [doi.10.1063/1.3257920]
引用
收藏
页数:10
相关论文
共 24 条
[1]   Ignition conditions for magnetized target fusion in cylindrical geometry [J].
Basko, MM ;
Kemp, AJ ;
Meyer-ter-Vehn, J .
NUCLEAR FUSION, 2000, 40 (01) :59-68
[2]   Numerical modeling of a pulsed electromagnetic plasma thruster experiment [J].
Cassibry, J. T. ;
Thio, Y. C. Francis ;
Markusic, T. E. ;
Wu, S. T. .
JOURNAL OF PROPULSION AND POWER, 2006, 22 (03) :628-636
[3]   Stability of imploding spherical shock waves [J].
Chen, HB ;
Zhang, L ;
Panarella, E .
JOURNAL OF FUSION ENERGY, 1995, 14 (04) :389-392
[4]   Submegajoule liner implosion of a closed field line configuration [J].
Drake, RP ;
Hammer, JH ;
Hartman, CW ;
Perkins, LJ ;
Ryutov, DD .
FUSION TECHNOLOGY, 1996, 30 (03) :310-325
[5]   Magneto-inertial approach to direct-drive laser fusion [J].
Gotchev, O. V. ;
Jang, N. W. ;
Knauer, J. P. ;
Barbero, M. D. ;
Betti, R. ;
Li, C. K. ;
Petrasso, R. D. .
JOURNAL OF FUSION ENERGY, 2008, 27 (1-2) :25-31
[6]   Technical Summary of the First US Plasma Jet Workshop [J].
Hsu, Scott C. .
JOURNAL OF FUSION ENERGY, 2009, 28 (03) :246-257
[7]   Physics basis and progress for a translating FRC for MTF [J].
Intrator, T. P. ;
Wurden, G. A. ;
Sieck, P. E. ;
Waganaar, W. J. ;
Renneke, R. ;
Dorf, L. ;
Kostora, M. ;
Hsu, S. C. ;
Lynn, A. G. ;
Gilmore, M. ;
Siemon, R. E. ;
Awe, T. ;
Degnan, J. ;
Grabowski, C. ;
Ruden, E. L. .
JOURNAL OF FUSION ENERGY, 2008, 27 (1-2) :57-60
[8]   THE EFFECT OF RAIL RESISTANCE ON RAILGUN EFFICIENCY [J].
JOHNSON, DE ;
BAUER, DP .
IEEE TRANSACTIONS ON MAGNETICS, 1989, 25 (01) :271-276
[9]   MAGNETIZED TARGET FUSION - AN OVERVIEW [J].
KIRKPATRICK, RC ;
LINDEMUTH, IR ;
WARD, MS .
FUSION TECHNOLOGY, 1995, 27 (03) :201-214
[10]  
Knapp C. E., 2000, THESIS U NEW MEXICO