The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1]

被引:183
作者
Kuijlaars, ABJ
Mclaughlin, KTR
Van Assche, W
Vanlessen, M
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Heverlee, Belgium
[2] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
[3] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
orthogonal polynomials; Riemann-Hilbert problems; steepest descent; Bessel functions;
D O I
10.1016/j.aim.2003.08.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider polynomials that are orthogonal on [-1, 1] with respect to a modified Jacobi weight (1 - x)(alpha)(1 + x)(beta) h(x), with alpha, beta > - 1 and h real analytic and strictly positive on [-1, 1]. We obtain full asymptotic expansions for the monic and orthonormal polynomials outside the interval [-1, 1], for the recurrence coefficients and for the leading coefficients of the orthonormal polynomials. We also deduce asymptotic behavior for the Hankel determinants and for the monic orthogonal polynomials on the interval [-1, 1]. For the asymptotic analysis we use the steepest descent technique for Riemann-Hilbert problems developed by Deift and Zhou, and applied to orthogonal polynomials on the real line by Deift, Kriecherbauer, McLaughlin, Venakides, and Zhou. In the steepest descent method we will use the Szego function associated with the weight and for the local analysis around the endpoints +/-1 we use Bessel functions of appropriate order, whereas Deift et al. use Airy functions. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:337 / 398
页数:62
相关论文
共 50 条
[21]   Resurgence relation and global asymptotic analysis of orthogonal polynomials via the Riemann-Hilbert approach [J].
ShuaiXia Xu ;
YuQiu Zhao .
Science China Mathematics, 2011, 54 :661-679
[22]   Numerical Solution of Riemann-Hilbert Problems: Random Matrix Theory and Orthogonal Polynomials [J].
Olver, Sheehan ;
Trogdon, Thomas .
CONSTRUCTIVE APPROXIMATION, 2014, 39 (01) :101-149
[23]   Plancherel-Rotach type asymptotics of the sieved Pollaczek polynomials via the Riemann-Hilbert approach [J].
Wu, Xiao-Bo ;
Lin, Yu ;
Xu, Shuai-Xia ;
Zhao, Yu-Qiu .
JOURNAL OF APPROXIMATION THEORY, 2016, 208 :21-58
[24]   On the Riemann-Hilbert approach to asymptotics of tronquee solutions of Painleve I [J].
Deano, Alfredo .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (31)
[25]   Riemann-Hilbert theory without local parametrix problems: Applications to orthogonal polynomials [J].
Piorkowski, Mateusz .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 504 (02)
[26]   Global asymptotic expansions of the Laguerre polynomials-a Riemann-Hilbert approach [J].
Qiu, W.-Y. ;
Wong, R. .
NUMERICAL ALGORITHMS, 2008, 49 (1-4) :331-372
[27]   MATRIX JACOBI BIORTHOGONAL POLYNOMIALS VIA RIEMANN-HILBERT PROBLEM [J].
Branquinho, Amilcar ;
Foulquie-Moreno, Ana ;
Fradi, Assil ;
Manas, Manuel .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (01) :193-208
[28]   THE RIEMANN-HILBERT APPROACH TO OBTAIN CRITICAL ASYMPTOTICS FOR HAMILTONIAN PERTURBATIONS OF HYPERBOLIC AND ELLIPTIC SYSTEMS [J].
Claeys, Tom .
RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (01)
[29]   A Riemann-Hilbert approach to Jacobi operators and Gaussian quadrature [J].
Trogdon, Thomas ;
Olver, Sheehan .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (01) :174-196
[30]   Riemann-Hilbert Analysis for Laguerre Polynomials with Large Negative Parameter [J].
Arno B. J. Kuijlaars ;
Kenneth T.-R. McLaughlin .
Computational Methods and Function Theory, 2001, 1 (1) :205-233