On the contact problem of classical elasticity

被引:11
作者
Russo, Antonio [1 ]
Tartaglione, Alfonsina [1 ]
机构
[1] Univ Naples 2, Dipartimento Matemat, I-81100 Caserta, Italy
关键词
Linearly elastic bodies; Systems of linear elasticity; Exterior domains; Contact problem; Existence and uniqueness;
D O I
10.1007/s10659-009-9227-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We deal with the contact problem of homogeneous and isotropic linear elastostatics in the exterior of a bounded convex domain of R(3). We prove existence and uniqueness of a solution, provided the elasticity tensor is only strongly elliptic.
引用
收藏
页码:19 / 38
页数:20
相关论文
共 10 条
[1]  
[Anonymous], 2003, DIRECT METHODS CALCU, DOI DOI 10.1142/5002
[2]  
Dautray R., 1990, Mathematical analysis and numerical methods for science and technology, V4
[3]  
EDELSTEIN WS, 1968, J APPL MATH PHYS, V19, P906
[4]  
FOSDICK RI, 1968, J APPL MATH PHYS, V19, P219
[5]   A note on uniqueness in linear elastostatics [J].
Fosdick, Roger ;
Piccioni, M. D. ;
Puglisi, G. .
JOURNAL OF ELASTICITY, 2007, 88 (01) :79-86
[6]  
Gurtin ME., 1972, Handbuch der Physik, band Via/2
[7]   BOUNDARY-VALUE-PROBLEMS FOR THE SYSTEM OF ELASTICITY THEORY IN UNBOUNDED-DOMAINS - KORNS INEQUALITIES [J].
KONDRATEV, VA ;
OLEINIK, OA .
RUSSIAN MATHEMATICAL SURVEYS, 1988, 43 (05) :65-119
[8]  
Kupradze V D., 1979, Three-dimensional problems of elasticity and thermoelasticity
[9]   On Stokes' Problem [J].
Russo, Remigio .
ADVANCES IN MATHEMATICAL FLUID MECHANICS: DEDICATED TO GIOVANNI PAOLO GALDI ON THE OCCASION OF HIS 60TH BIRTHDAY, INTERNATIONAL CONFERENCE ON MATHEMATICAL FLUID MECHANICS, 2007, 2010, :473-511
[10]  
Solonnikov V.A., 1973, Tr. Mat. Inst. Steklova, V125, P196