Kinetic Monte Carlo simulation of transport in amorphous silicon passivation layers in silicon heterojunction solar cells

被引:9
作者
Muralidharan, Pradyumna [1 ]
Goodnick, Stephen M. [1 ]
Vasileska, Dragica [1 ]
机构
[1] Arizona State Univ, Tempe, AZ 85281 USA
基金
美国国家科学基金会;
关键词
Silicon heterojunction solar cells; Kinetic Monte Carlo; Defect-assisted transport; Device modeling; DEFECT-POOL MODEL; TEMPERATURE-DEPENDENCE; CONTACT; MOOX;
D O I
10.1007/s10825-019-01379-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Silicon heterojunction solar cell device structures use carrier-selective contacts to maximize collection of photogenerated carriers. The carrier-selective contact structure consists of doped hydrogenated amorphous silicon and intrinsic hydrogenated amorphous silicon [a-Si:H(i)]. In this structure, the a-Si:H(i) layer plays a crucial role as it passivates the heterointerface between the doped hydrogenated amorphous silicon and the crystalline silicon enabling the solar cell to achieve high device efficiencies. However, the a-Si:H(i) layer also creates a potential barrier to photogenerated carriers which obstructs them from getting collected. Previously, experimental studies in the literature have predicted that the photogenerated carriers cross the barrier by defect-assisted transport (hopping). Traditionally, theoretical models that are employed to study the electrical characteristics of silicon heterojunction solar cells do not provide any great insight into the transport of carriers via defects. In this paper, we present an in-house developed kinetic Monte Carlo that simulates the transport of photogenerated holes through the band tail defect states in the a-Si:H(i) layer. This is done primarily by defining transition rates associated with carrier-defect interactions. We conduct simulations to understand the impact of the properties (optical phonon energy, defect density, etc.) of the a-Si:H(i) layer on transport of photogenerated holes. Our simulations indicate that multi-phonon injection and hopping processes assist photogenerated holes to cross the a-Si:H(i) layer, which is in agreement with experimental findings.
引用
收藏
页码:1152 / 1161
页数:10
相关论文
共 50 条
[41]   A route towards high-efficiency silicon heterojunction solar cells [J].
Duan, Weiyuan ;
Lambertz, Andreas ;
Bittkau, Karsten ;
Qiu, Depeng ;
Qiu, Kaifu ;
Rau, Uwe ;
Ding, Kaining .
PROGRESS IN PHOTOVOLTAICS, 2022, 30 (04) :384-392
[42]   Silicon-Hydrogen Bonding Configuration Modified by Layer Stacking Sequence in Silicon Heterojunction Solar Cells [J].
An, Jeong-Ho ;
Oh, Joon-Ho ;
Jeong, Kyung Taek ;
Kwon, Ohmin ;
Oh, Soong Ju ;
Kim, Kyoung-Ho ;
Kim, Sun-Wook ;
Keum, Min Jong ;
Song, Hee-eun ;
Kim, Ka-Hyun .
ACS APPLIED ENERGY MATERIALS, 2022, 5 (12) :15029-15037
[43]   Balance of efficiency and stability of silicon heterojunction solar cells [J].
Jiang, Kai ;
Yang, Yuhao ;
Yan, Zhu ;
Huang, Shenglei ;
Li, Xiaodong ;
Li, Zhenfei ;
Zhou, Yinuo ;
Zhang, Liping ;
Meng, Fanying ;
Liu, Zhengxin ;
Liu, Wenzhu .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 243
[44]   Damage to passivation contact in silicon heterojunction solar cells by ITO sputtering under various plasma excitation modes [J].
Anh Huy Tuan Le ;
Vinh Ai Dao ;
Duy Phong Pham ;
Kim, Sangho ;
Dutta, Subhajit ;
Cam Phu Thi Nguyen ;
Lee, Youngseok ;
Kim, Youngkuk ;
Yi, Junsin .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 192 :36-43
[45]   Phosphorous Catalytic-Doping of Silicon Alloys for the Use in Silicon Heterojunction Solar Cells [J].
Liu, Yong ;
Pomaska, Manuel ;
Duan, Weiyuan ;
Kim, Do Yun ;
Koehler, Malte ;
Breuer, Uwe ;
Ding, Kaining .
ADVANCED ENGINEERING MATERIALS, 2020, 22 (06)
[46]   Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics [J].
Nogay, Gizem ;
Seif, Johannes Peter ;
Riesen, Yannick ;
Tomasi, Andrea ;
Jeangros, Quentin ;
Wyrsch, Nicolas ;
Haug, Franz-Josef ;
De Wolf, Stefaan ;
Ballif, Christophe .
IEEE JOURNAL OF PHOTOVOLTAICS, 2016, 6 (06) :1654-1662
[47]   Simulation of high efficiency silicon heterojunction solar cells with molybdenum oxide carrier selective layer [J].
Hao, Li-Cheng ;
Zhang, Ming ;
Ni, Ming ;
Liu, Jia-Ming ;
Feng, Xiao-Dong .
MATERIALS RESEARCH EXPRESS, 2018, 5 (07)
[48]   Silicon Heterojunction Solar Cells Featuring Localized Front Contacts [J].
Smits, Sebastian ;
Zhao, Yifeng ;
Moya, Paul Procel ;
Mazzarella, Luana ;
Isabella, Olindo .
SOLAR RRL, 2025, 9 (07)
[49]   Physical mechanism and optimal design of silicon heterojunction solar cells [J].
Xiao You-Peng ;
Wang Tao ;
Wei Xiu-Qin ;
Zhou Lang .
ACTA PHYSICA SINICA, 2017, 66 (10)
[50]   Improved Infrared Light Management with Transparent Conductive Oxide/Amorphous Silicon Back Reflector in High-Efficiency Silicon Heterojunction Solar Cells [J].
Duan, Weiyuan ;
Bittkau, Karsten ;
Lambertz, Andreas ;
Qiu, Kaifu ;
Yao, Zhirong ;
Steuter, Paul ;
Qiu, Depeng ;
Rau, Uwe ;
Ding, Kaining .
SOLAR RRL, 2021, 5 (03)